from __future__ import annotations
import json
import traceback
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Generic, Literal
from openai import RateLimitError
from pydantic import BaseModel, ConfigDict, Field, ValidationError, create_model, model_validator
from typing_extensions import TypeVar
from uuid_extensions import uuid7str
from browser_use.agent.message_manager.views import MessageManagerState
from browser_use.browser.views import BrowserStateHistory
from browser_use.controller.registry.views import ActionModel
from browser_use.dom.views import DEFAULT_INCLUDE_ATTRIBUTES, DOMInteractedElement, DOMSelectorMap
# from browser_use.dom.history_tree_processor.service import (
# DOMElementNode,
# DOMHistoryElement,
# HistoryTreeProcessor,
# )
# from browser_use.dom.views import SelectorMap
from browser_use.filesystem.file_system import FileSystemState
from browser_use.llm.base import BaseChatModel
from browser_use.tokens.views import UsageSummary
class AgentSettings(BaseModel):
"""Configuration options for the Agent"""
use_vision: bool = True
vision_detail_level: Literal['auto', 'low', 'high'] = 'auto'
use_vision_for_planner: bool = False
save_conversation_path: str | Path | None = None
save_conversation_path_encoding: str | None = 'utf-8'
max_failures: int = 3
retry_delay: int = 10
validate_output: bool = False
generate_gif: bool | str = False
override_system_message: str | None = None
extend_system_message: str | None = None
include_attributes: list[str] | None = DEFAULT_INCLUDE_ATTRIBUTES
max_actions_per_step: int = 10
use_thinking: bool = True
flash_mode: bool = False # If enabled, disables evaluation_previous_goal and next_goal, and sets use_thinking = False
max_history_items: int | None = None
page_extraction_llm: BaseChatModel | None = None
planner_llm: BaseChatModel | None = None
planner_interval: int = 1 # Run planner every N steps
is_planner_reasoning: bool = False # type: ignore
extend_planner_system_message: str | None = None
calculate_cost: bool = False
include_tool_call_examples: bool = False
llm_timeout: int = 60 # Timeout in seconds for LLM calls
step_timeout: int = 180 # Timeout in seconds for each step
class AgentState(BaseModel):
"""Holds all state information for an Agent"""
agent_id: str = Field(default_factory=uuid7str)
n_steps: int = 1
consecutive_failures: int = 0
last_result: list[ActionResult] | None = None
last_plan: str | None = None
last_model_output: AgentOutput | None = None
paused: bool = False
stopped: bool = False
session_initialized: bool = False # Track if session events have been dispatched
message_manager_state: MessageManagerState = Field(default_factory=MessageManagerState)
file_system_state: FileSystemState | None = None
# class Config:
# arbitrary_types_allowed = True
@dataclass
class AgentStepInfo:
step_number: int
max_steps: int
def is_last_step(self) -> bool:
"""Check if this is the last step"""
return self.step_number >= self.max_steps - 1
class ActionResult(BaseModel):
"""Result of executing an action"""
# For done action
is_done: bool | None = False
success: bool | None = None
# Error handling - always include in long term memory
error: str | None = None
# Files
attachments: list[str] | None = None # Files to display in the done message
# Always include in long term memory
long_term_memory: str | None = None # Memory of this action
# if update_only_read_state is True we add the extracted_content to the agent context only once for the next step
# if update_only_read_state is False we add the extracted_content to the agent long term memory if no long_term_memory is provided
extracted_content: str | None = None
include_extracted_content_only_once: bool = False # Whether the extracted content should be used to update the read_state
# Deprecated
include_in_memory: bool = False # whether to include in extracted_content inside long_term_memory
@model_validator(mode='after')
def validate_success_requires_done(self):
"""Ensure success=True can only be set when is_done=True"""
if self.success is True and self.is_done is not True:
raise ValueError(
'success=True can only be set when is_done=True. '
'For regular actions that succeed, leave success as None. '
'Use success=False only for actions that fail.'
)
return self
class StepMetadata(BaseModel):
"""Metadata for a single step including timing and token information"""
step_start_time: float
step_end_time: float
step_number: int
@property
def duration_seconds(self) -> float:
"""Calculate step duration in seconds"""
return self.step_end_time - self.step_start_time
class AgentBrain(BaseModel):
thinking: str | None = None
evaluation_previous_goal: str
memory: str
next_goal: str
class AgentOutput(BaseModel):
model_config = ConfigDict(arbitrary_types_allowed=True, extra='forbid')
thinking: str | None = None
evaluation_previous_goal: str | None = None
memory: str | None = None
next_goal: str | None = None
action: list[ActionModel] = Field(
...,
description='List of actions to execute',
json_schema_extra={'min_items': 1}, # Ensure at least one action is provided
)
@classmethod
def model_json_schema(cls, **kwargs):
schema = super().model_json_schema(**kwargs)
schema['required'] = ['evaluation_previous_goal', 'memory', 'next_goal', 'action']
return schema
@property
def current_state(self) -> AgentBrain:
"""For backward compatibility - returns an AgentBrain with the flattened properties"""
return AgentBrain(
thinking=self.thinking,
evaluation_previous_goal=self.evaluation_previous_goal if self.evaluation_previous_goal else '',
memory=self.memory if self.memory else '',
next_goal=self.next_goal if self.next_goal else '',
)
@staticmethod
def type_with_custom_actions(custom_actions: type[ActionModel]) -> type[AgentOutput]:
"""Extend actions with custom actions"""
model_ = create_model(
'AgentOutput',
__base__=AgentOutput,
action=(
list[custom_actions], # type: ignore
Field(..., description='List of actions to execute', json_schema_extra={'min_items': 1}),
),
__module__=AgentOutput.__module__,
)
model_.__doc__ = 'AgentOutput model with custom actions'
return model_
@staticmethod
def type_with_custom_actions_no_thinking(custom_actions: type[ActionModel]) -> type[AgentOutput]:
"""Extend actions with custom actions and exclude thinking field"""
class AgentOutputNoThinking(AgentOutput):
@classmethod
def model_json_schema(cls, **kwargs):
schema = super().model_json_schema(**kwargs)
del schema['properties']['thinking']
schema['required'] = ['evaluation_previous_goal', 'memory', 'next_goal', 'action']
return schema
model = create_model(
'AgentOutput',
__base__=AgentOutputNoThinking,
action=(
list[custom_actions], # type: ignore
Field(..., description='List of actions to execute', json_schema_extra={'min_items': 1}),
),
__module__=AgentOutputNoThinking.__module__,
)
model.__doc__ = 'AgentOutput model with custom actions'
return model
@staticmethod
def type_with_custom_actions_flash_mode(custom_actions: type[ActionModel]) -> type[AgentOutput]:
"""Extend actions with custom actions for flash mode - memory and action fields only"""
class AgentOutputFlashMode(AgentOutput):
@classmethod
def model_json_schema(cls, **kwargs):
schema = super().model_json_schema(**kwargs)
# Remove thinking, evaluation_previous_goal, and next_goal fields
del schema['properties']['thinking']
del schema['properties']['evaluation_previous_goal']
del schema['properties']['next_goal']
# Update required fields to only include remaining properties
schema['required'] = ['memory', 'action']
return schema
model = create_model(
'AgentOutput',
__base__=AgentOutputFlashMode,
action=(
list[custom_actions], # type: ignore
Field(..., description='List of actions to execute', json_schema_extra={'min_items': 1}),
),
__module__=AgentOutputFlashMode.__module__,
)
model.__doc__ = 'AgentOutput model with custom actions'
return model
class AgentHistory(BaseModel):
"""History item for agent actions"""
model_output: AgentOutput | None
result: list[ActionResult]
state: BrowserStateHistory
metadata: StepMetadata | None = None
model_config = ConfigDict(arbitrary_types_allowed=True, protected_namespaces=())
@staticmethod
def get_interacted_element(model_output: AgentOutput, selector_map: DOMSelectorMap) -> list[DOMInteractedElement | None]:
elements = []
for action in model_output.action:
index = action.get_index()
if index is not None and index in selector_map:
el = selector_map[index]
elements.append(DOMInteractedElement.load_from_enhanced_dom_tree(el))
else:
elements.append(None)
return elements
def model_dump(self, **kwargs) -> dict[str, Any]:
"""Custom serialization handling circular references"""
# Handle action serialization
model_output_dump = None
if self.model_output:
action_dump = [action.model_dump(exclude_none=True) for action in self.model_output.action]
model_output_dump = {
'evaluation_previous_goal': self.model_output.evaluation_previous_goal,
'memory': self.model_output.memory,
'next_goal': self.model_output.next_goal,
'action': action_dump, # This preserves the actual action data
}
# Only include thinking if it's present
if self.model_output.thinking is not None:
model_output_dump['thinking'] = self.model_output.thinking
return {
'model_output': model_output_dump,
'result': [r.model_dump(exclude_none=True) for r in self.result],
'state': self.state.to_dict(),
'metadata': self.metadata.model_dump() if self.metadata else None,
}
AgentStructuredOutput = TypeVar('AgentStructuredOutput', bound=BaseModel)
class AgentHistoryList(BaseModel, Generic[AgentStructuredOutput]):
"""List of AgentHistory messages, i.e. the history of the agent's actions and thoughts."""
history: list[AgentHistory]
usage: UsageSummary | None = None
_output_model_schema: type[AgentStructuredOutput] | None = None
def total_duration_seconds(self) -> float:
"""Get total duration of all steps in seconds"""
total = 0.0
for h in self.history:
if h.metadata:
total += h.metadata.duration_seconds
return total
def __len__(self) -> int:
"""Return the number of history items"""
return len(self.history)
def __str__(self) -> str:
"""Representation of the AgentHistoryList object"""
return f'AgentHistoryList(all_results={self.action_results()}, all_model_outputs={self.model_actions()})'
def add_item(self, history_item: AgentHistory) -> None:
"""Add a history item to the list"""
self.history.append(history_item)
def __repr__(self) -> str:
"""Representation of the AgentHistoryList object"""
return self.__str__()
def save_to_file(self, filepath: str | Path) -> None:
"""Save history to JSON file with proper serialization"""
try:
Path(filepath).parent.mkdir(parents=True, exist_ok=True)
data = self.model_dump()
with open(filepath, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2)
except Exception as e:
raise e
# def save_as_playwright_script(
# self,
# output_path: str | Path,
# sensitive_data_keys: list[str] | None = None,
# browser_config: BrowserConfig | None = None,
# context_config: BrowserContextConfig | None = None,
# ) -> None:
# """
# Generates a Playwright script based on the agent's history and saves it to a file.
# Args:
# output_path: The path where the generated Python script will be saved.
# sensitive_data_keys: A list of keys used as placeholders for sensitive data
# (e.g., ['username_placeholder', 'password_placeholder']).
# These will be loaded from environment variables in the
# generated script.
# browser_config: Configuration of the original Browser instance.
# context_config: Configuration of the original BrowserContext instance.
# """
# from browser_use.agent.playwright_script_generator import PlaywrightScriptGenerator
# try:
# serialized_history = self.model_dump()['history']
# generator = PlaywrightScriptGenerator(serialized_history, sensitive_data_keys, browser_config, context_config)
# script_content = generator.generate_script_content()
# path_obj = Path(output_path)
# path_obj.parent.mkdir(parents=True, exist_ok=True)
# with open(path_obj, 'w', encoding='utf-8') as f:
# f.write(script_content)
# except Exception as e:
# raise e
def model_dump(self, **kwargs) -> dict[str, Any]:
"""Custom serialization that properly uses AgentHistory's model_dump"""
return {
'history': [h.model_dump(**kwargs) for h in self.history],
}
@classmethod
def load_from_file(cls, filepath: str | Path, output_model: type[AgentOutput]) -> AgentHistoryList:
"""Load history from JSON file"""
with open(filepath, encoding='utf-8') as f:
data = json.load(f)
# loop through history and validate output_model actions to enrich with custom actions
for h in data['history']:
if h['model_output']:
if isinstance(h['model_output'], dict):
h['model_output'] = output_model.model_validate(h['model_output'])
else:
h['model_output'] = None
if 'interacted_element' not in h['state']:
h['state']['interacted_element'] = None
history = cls.model_validate(data)
return history
def last_action(self) -> None | dict:
"""Last action in history"""
if self.history and self.history[-1].model_output:
return self.history[-1].model_output.action[-1].model_dump(exclude_none=True)
return None
def errors(self) -> list[str | None]:
"""Get all errors from history, with None for steps without errors"""
errors = []
for h in self.history:
step_errors = [r.error for r in h.result if r.error]
# each step can have only one error
errors.append(step_errors[0] if step_errors else None)
return errors
def final_result(self) -> None | str:
"""Final result from history"""
if self.history and self.history[-1].result[-1].extracted_content:
return self.history[-1].result[-1].extracted_content
return None
def is_done(self) -> bool:
"""Check if the agent is done"""
if self.history and len(self.history[-1].result) > 0:
last_result = self.history[-1].result[-1]
return last_result.is_done is True
return False
def is_successful(self) -> bool | None:
"""Check if the agent completed successfully - the agent decides in the last step if it was successful or not. None if not done yet."""
if self.history and len(self.history[-1].result) > 0:
last_result = self.history[-1].result[-1]
if last_result.is_done is True:
return last_result.success
return None
def has_errors(self) -> bool:
"""Check if the agent has any non-None errors"""
return any(error is not None for error in self.errors())
def urls(self) -> list[str | None]:
"""Get all unique URLs from history"""
return [h.state.url if h.state.url is not None else None for h in self.history]
def screenshot_paths(self, n_last: int | None = None, return_none_if_not_screenshot: bool = True) -> list[str | None]:
"""Get all screenshot paths from history"""
if n_last == 0:
return []
if n_last is None:
if return_none_if_not_screenshot:
return [h.state.screenshot_path if h.state.screenshot_path is not None else None for h in self.history]
else:
return [h.state.screenshot_path for h in self.history if h.state.screenshot_path is not None]
else:
if return_none_if_not_screenshot:
return [h.state.screenshot_path if h.state.screenshot_path is not None else None for h in self.history[-n_last:]]
else:
return [h.state.screenshot_path for h in self.history[-n_last:] if h.state.screenshot_path is not None]
def screenshots(self, n_last: int | None = None, return_none_if_not_screenshot: bool = True) -> list[str | None]:
"""Get all screenshots from history as base64 strings"""
if n_last == 0:
return []
history_items = self.history if n_last is None else self.history[-n_last:]
screenshots = []
for item in history_items:
screenshot_b64 = item.state.get_screenshot()
if screenshot_b64:
screenshots.append(screenshot_b64)
else:
if return_none_if_not_screenshot:
screenshots.append(None)
# If return_none_if_not_screenshot is False, we skip None values
return screenshots
def action_names(self) -> list[str]:
"""Get all action names from history"""
action_names = []
for action in self.model_actions():
actions = list(action.keys())
if actions:
action_names.append(actions[0])
return action_names
def model_thoughts(self) -> list[AgentBrain]:
"""Get all thoughts from history"""
return [h.model_output.current_state for h in self.history if h.model_output]
def model_outputs(self) -> list[AgentOutput]:
"""Get all model outputs from history"""
return [h.model_output for h in self.history if h.model_output]
# get all actions with params
def model_actions(self) -> list[dict]:
"""Get all actions from history"""
outputs = []
for h in self.history:
if h.model_output:
# Guard against None interacted_element before zipping
interacted_elements = h.state.interacted_element or [None] * len(h.model_output.action)
for action, interacted_element in zip(h.model_output.action, interacted_elements):
output = action.model_dump(exclude_none=True)
output['interacted_element'] = interacted_element
outputs.append(output)
return outputs
def action_history(self) -> list[list[dict]]:
"""Get truncated action history with only essential fields"""
step_outputs = []
for h in self.history:
step_actions = []
if h.model_output:
# Guard against None interacted_element before zipping
interacted_elements = h.state.interacted_element or [None] * len(h.model_output.action)
# Zip actions with interacted elements and results
for action, interacted_element, result in zip(h.model_output.action, interacted_elements, h.result):
action_output = action.model_dump(exclude_none=True)
action_output['interacted_element'] = interacted_element
# Only keep long_term_memory from result
action_output['result'] = result.long_term_memory if result and result.long_term_memory else None
step_actions.append(action_output)
step_outputs.append(step_actions)
return step_outputs
def action_results(self) -> list[ActionResult]:
"""Get all results from history"""
results = []
for h in self.history:
results.extend([r for r in h.result if r])
return results
def extracted_content(self) -> list[str]:
"""Get all extracted content from history"""
content = []
for h in self.history:
content.extend([r.extracted_content for r in h.result if r.extracted_content])
return content
def model_actions_filtered(self, include: list[str] | None = None) -> list[dict]:
"""Get all model actions from history as JSON"""
if include is None:
include = []
outputs = self.model_actions()
result = []
for o in outputs:
for i in include:
if i == list(o.keys())[0]:
result.append(o)
return result
def number_of_steps(self) -> int:
"""Get the number of steps in the history"""
return len(self.history)
@property
def structured_output(self) -> AgentStructuredOutput | None:
"""Get the structured output from the history
Returns:
The structured output if both final_result and _output_model_schema are available,
otherwise None
"""
final_result = self.final_result()
if final_result is not None and self._output_model_schema is not None:
return self._output_model_schema.model_validate_json(final_result)
return None
class AgentError:
"""Container for agent error handling"""
VALIDATION_ERROR = 'Invalid model output format. Please follow the correct schema.'
RATE_LIMIT_ERROR = 'Rate limit reached. Waiting before retry.'
NO_VALID_ACTION = 'No valid action found'
@staticmethod
def format_error(error: Exception, include_trace: bool = False) -> str:
"""Format error message based on error type and optionally include trace"""
message = ''
if isinstance(error, ValidationError):
return f'{AgentError.VALIDATION_ERROR}\nDetails: {str(error)}'
if isinstance(error, RateLimitError):
return AgentError.RATE_LIMIT_ERROR
if include_trace:
return f'{str(error)}\nStacktrace:\n{traceback.format_exc()}'
return f'{str(error)}'