Skip to main content
Glama

web_data_etsy_products

Extract structured product data from Etsy listings using a product URL. Provides reliable cached product information for analysis and integration.

Instructions

Quickly read structured etsy product data. Requires a valid etsy product URL. This can be a cache lookup, so it can be more reliable than scraping

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
urlYes

Implementation Reference

  • The handler function for web_data_etsy_products. Triggers a BrightData dataset snapshot using dataset_id 'gd_ltppk0jdv1jqz25mz' with the provided URL input, polls until ready, and returns the JSON data.
    execute: tool_fn(`web_data_${id}`, async(data, ctx)=>{ let trigger_response = await axios({ url: 'https://api.brightdata.com/datasets/v3/trigger', params: {dataset_id, include_errors: true}, method: 'POST', data: [data], headers: api_headers(), }); if (!trigger_response.data?.snapshot_id) throw new Error('No snapshot ID returned from request'); let snapshot_id = trigger_response.data.snapshot_id; console.error(`[web_data_${id}] triggered collection with ` +`snapshot ID: ${snapshot_id}`); let max_attempts = 600; let attempts = 0; while (attempts < max_attempts) { try { if (ctx && ctx.reportProgress) { await ctx.reportProgress({ progress: attempts, total: max_attempts, message: `Polling for data (attempt ` +`${attempts + 1}/${max_attempts})`, }); } let snapshot_response = await axios({ url: `https://api.brightdata.com/datasets/v3` +`/snapshot/${snapshot_id}`, params: {format: 'json'}, method: 'GET', headers: api_headers(), }); if (['running', 'building'].includes(snapshot_response.data?.status)) { console.error(`[web_data_${id}] snapshot not ready, ` +`polling again (attempt ` +`${attempts + 1}/${max_attempts})`); attempts++; await new Promise(resolve=>setTimeout(resolve, 1000)); continue; } console.error(`[web_data_${id}] snapshot data received ` +`after ${attempts + 1} attempts`); let result_data = JSON.stringify(snapshot_response.data); return result_data; } catch(e){ console.error(`[web_data_${id}] polling error: ` +`${e.message}`); attempts++; await new Promise(resolve=>setTimeout(resolve, 1000)); } } throw new Error(`Timeout after ${max_attempts} seconds waiting ` +`for data`); }),
  • References the dynamically generated Zod schema for inputs (for etsy_products: {url: z.string().url()}).
    parameters: z.object(parameters),
  • server.js:683-744 (registration)
    Registers the tool named `web_data_${id}` (web_data_etsy_products when id='etsy_products') with description, schema, and shared execute handler.
    addTool({ name: `web_data_${id}`, description, parameters: z.object(parameters), execute: tool_fn(`web_data_${id}`, async(data, ctx)=>{ let trigger_response = await axios({ url: 'https://api.brightdata.com/datasets/v3/trigger', params: {dataset_id, include_errors: true}, method: 'POST', data: [data], headers: api_headers(), }); if (!trigger_response.data?.snapshot_id) throw new Error('No snapshot ID returned from request'); let snapshot_id = trigger_response.data.snapshot_id; console.error(`[web_data_${id}] triggered collection with ` +`snapshot ID: ${snapshot_id}`); let max_attempts = 600; let attempts = 0; while (attempts < max_attempts) { try { if (ctx && ctx.reportProgress) { await ctx.reportProgress({ progress: attempts, total: max_attempts, message: `Polling for data (attempt ` +`${attempts + 1}/${max_attempts})`, }); } let snapshot_response = await axios({ url: `https://api.brightdata.com/datasets/v3` +`/snapshot/${snapshot_id}`, params: {format: 'json'}, method: 'GET', headers: api_headers(), }); if (['running', 'building'].includes(snapshot_response.data?.status)) { console.error(`[web_data_${id}] snapshot not ready, ` +`polling again (attempt ` +`${attempts + 1}/${max_attempts})`); attempts++; await new Promise(resolve=>setTimeout(resolve, 1000)); continue; } console.error(`[web_data_${id}] snapshot data received ` +`after ${attempts + 1} attempts`); let result_data = JSON.stringify(snapshot_response.data); return result_data; } catch(e){ console.error(`[web_data_${id}] polling error: ` +`${e.message}`); attempts++; await new Promise(resolve=>setTimeout(resolve, 1000)); } } throw new Error(`Timeout after ${max_attempts} seconds waiting ` +`for data`); }), });
  • server.js:351-358 (registration)
    Specific configuration object in datasets array that defines id, dataset_id, description, and inputs for the etsy_products tool, used to generate web_data_etsy_products.
    id: 'etsy_products', dataset_id: 'gd_ltppk0jdv1jqz25mz', description: [ 'Quickly read structured etsy product data.', 'Requires a valid etsy product URL.', 'This can be a cache lookup, so it can be more reliable than scraping', ].join('\n'), inputs: ['url'],
  • Helper function that wraps the tool execute functions, adding rate limiting, stats tracking, logging, error handling, and timing.
    function tool_fn(name, fn){ return async(data, ctx)=>{ check_rate_limit(); debug_stats.tool_calls[name] = debug_stats.tool_calls[name]||0; debug_stats.tool_calls[name]++; debug_stats.session_calls++; let ts = Date.now(); console.error(`[%s] executing %s`, name, JSON.stringify(data)); try { return await fn(data, ctx); } catch(e){ if (e.response) { console.error(`[%s] error %s %s: %s`, name, e.response.status, e.response.statusText, e.response.data); let message = e.response.data; if (message?.length) throw new Error(`HTTP ${e.response.status}: ${message}`); } else console.error(`[%s] error %s`, name, e.stack); throw e; } finally { let dur = Date.now()-ts; console.error(`[%s] tool finished in %sms`, name, dur); } }; }

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dsouza-anush/brightdata-mcp-heroku'

If you have feedback or need assistance with the MCP directory API, please join our Discord server