Skip to main content
Glama

Healthcare Analytics MCP Server

by dslans
Dockerfile1.67 kB
# Use Python 3.11 slim image for optimal compatibility and size FROM python:3.11-slim as base # Set environment variables ENV PYTHONUNBUFFERED=1 \ PYTHONDONTWRITEBYTECODE=1 \ PIP_NO_CACHE_DIR=1 \ PIP_DISABLE_PIP_VERSION_CHECK=1 # Install system dependencies including build tools for FastMCP 2.11.3 RUN apt-get update && apt-get install -y \ gcc \ g++ \ build-essential \ libffi-dev \ libssl-dev \ pkg-config \ && rm -rf /var/lib/apt/lists/* # Create app directory WORKDIR /app # Copy requirements first for better Docker layer caching COPY requirements.txt . # Upgrade pip and install wheel for better dependency resolution RUN pip install --upgrade pip setuptools wheel # Install dependencies in stages to handle potential conflicts # First install core build dependencies RUN pip install --no-cache-dir \ pydantic==2.11.7 \ pydantic-core==2.33.2 \ typing-extensions==4.14.1 \ cryptography==45.0.6 # Then install FastMCP and its dependencies RUN pip install --no-cache-dir fastmcp==2.11.3 mcp==1.12.4 # Install remaining dependencies RUN pip install --no-cache-dir -r requirements.txt # Copy application code COPY healthcare_mcp_server.py . # Create non-root user for security RUN groupadd -r appuser && useradd -r -g appuser appuser RUN chown -R appuser:appuser /app USER appuser # Port not needed for MCP stdio protocol # EXPOSE 8000 # Health check HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ CMD python -c "import healthcare_mcp_server; print('Health check passed')" || exit 1 # Default command for MCP protocol via stdio CMD ["python", "healthcare_mcp_server.py"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dslans/mcp_healthcare_data'

If you have feedback or need assistance with the MCP directory API, please join our Discord server