Skip to main content
Glama

Bookmark Geni MCP Server

by droidnext
__init__.py1.07 kB
""" Reusable semantic search module with ChromaDB and sentence transformers. This module provides a clean interface for semantic search operations including: - Document storage with embeddings - Semantic search/retrieval - Metadata management - Vector database operations Example Usage: from search import SemanticSearch # Initialize search search = SemanticSearch(db_path="./my_db", collection_name="documents") # Store documents search.store( doc_id="doc1", text="Machine learning is a subset of artificial intelligence", metadata={"category": "AI", "source": "wiki"} ) # Search results = search.search("what is AI?", limit=5) for result in results: print(result["text"], result["distance"]) """ from .semantic_search import SemanticSearch from .vector_store import VectorStore from .embeddings import EmbeddingGenerator from .config import SearchConfig __all__ = [ "SemanticSearch", "VectorStore", "EmbeddingGenerator", "SearchConfig", ] __version__ = "1.0.0"

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/droidnext/bookmark_geni_mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server