Skip to main content
Glama

MCP AI POC (Still in progress)

CI

MCP (Model Context Protocol) Server with AI-powered development tools and resources.

What This Project Provides

This project provides a comprehensive MCP server that offers:

๐Ÿ› ๏ธ AI-Powered Tools

  • Code Generation: Generate production-ready code from specifications

  • Code Refactoring: Improve existing code for better maintainability, performance, or readability

  • Debugging Assistant: Analyze and fix code issues with detailed explanations

  • Performance Optimization: Identify bottlenecks and optimize code performance

  • Test Generation: Create comprehensive unit tests for any codebase

๐Ÿ“‹ Smart Prompts

  • Code Analysis: Deep analysis for quality, security, and best practices

  • Documentation Generation: Auto-generate docs in multiple styles (Google, Sphinx, NumPy)

  • Code Review: Comprehensive reviews with focus on specific areas

  • Concept Explanation: Explain programming concepts at different skill levels

๐Ÿ“š Knowledge Resources

  • Python Coding Guidelines: Best practices and style guides

  • Design Patterns Reference: Common patterns with examples

  • Security Best Practices: Security guidelines and vulnerability prevention

  • Performance Optimization Guide: Strategies for faster, more efficient code

Quick Start

1. Installation

# Clone and set up the project git clone <your-repo-url> cd mcp-ai-poc # Create and activate virtual environment python3 -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt pip install -r dev-requirements.txt # For development and testing # Install in editable mode pip install -e .

2. Set Up Environment

# Set your OpenAI API key export OPENAI_API_KEY="your-api-key-here"

3. Run as MCP Server

# Start MCP server python src/run.py # or python -m mcp_poc.standalone_server

4. Run Tests (Optional)

# Run all tests pytest # Run with verbose output pytest -v # Run specific test file pytest src/tests/test_server.py

MCP Integration

Using with MCP-Compatible Clients

This server implements the Model Context Protocol and can be used with any MCP-compatible client like Claude Desktop, etc.

Configuration Example

Add to your MCP client configuration:

{ "mcpServers": { "mcp-ai-poc": { "command": "python", "args": ["/path/to/mcp-ai-poc/src/run.py"], "env": { "OPENAI_API_KEY": "your-api-key-here" } } } }

Available MCP Capabilities

Tools:

  • generate_code - Generate code from specifications

  • refactor_code - Refactor existing code

  • debug_code - Debug and fix code issues

  • optimize_performance - Optimize code performance

  • generate_tests - Generate unit tests

Prompts:

  • analyze_code - Comprehensive code analysis

  • generate_documentation - Create documentation

  • code_review - Perform code reviews

  • explain_concept - Explain programming concepts

Resources:

  • coding-guidelines://python - Python best practices

  • patterns://design-patterns - Design patterns reference

  • security://best-practices - Security guidelines

  • performance://optimization-guide - Performance tips

Key Features

๐Ÿš€ Comprehensive MCP Server

This project provides a full-featured MCP server with production-ready capabilities:

๐Ÿ”ง Architecture

  • Standalone Server: No external MCP dependencies required

  • JSON-RPC Protocol: Implements MCP's communication protocol

  • Modular Design: Separate modules for AI tools, server logic, and utilities

  • Error Handling: Robust error handling for production use

  • Comprehensive Testing: Full test suite with pytest for reliability

๐Ÿ’ก Practical AI Tools

Each tool is designed to solve real development problems:

  • Code Generation: Handles specifications with context awareness

  • Refactoring: Focuses on specific goals (performance, readability, etc.)

  • Debugging: Provides root cause analysis and fixes

  • Optimization: Identifies bottlenecks with trade-off analysis

  • Testing: Generates comprehensive test suites

๐Ÿ“– Rich Knowledge Base

Built-in resources provide instant access to:

  • Coding standards and best practices

  • Security guidelines

  • Performance optimization strategies

  • Design pattern references

Use Cases

For Individual Developers

  • Code Review: Get instant feedback on your code

  • Learning: Understand concepts and best practices

  • Debugging: Get help with tricky bugs

  • Documentation: Generate docs automatically

For Teams

  • Consistency: Enforce coding standards across the team

  • Knowledge Sharing: Built-in best practices and patterns

  • Code Quality: Automated analysis and suggestions

  • Onboarding: Help new team members learn patterns

For AI Assistants

  • Enhanced Capabilities: Provide AI assistants with powerful development tools

  • Context-Aware Help: Tools understand programming context

  • Structured Responses: Well-formatted, actionable output

  • Resource Access: Built-in knowledge base for common questions

Project Structure

src/ โ”œโ”€โ”€ mcp_poc/ # Main package โ”‚ โ”œโ”€โ”€ __init__.py # Package initialization โ”‚ โ”œโ”€โ”€ app.py # Main application (chat + server entry) โ”‚ โ”œโ”€โ”€ ai_tools.py # OpenAI client and utilities โ”‚ โ”œโ”€โ”€ standalone_server.py # MCP server implementation โ”‚ โ””โ”€โ”€ mcp_server.py # Alternative MCP server (requires mcp package) โ”œโ”€โ”€ tests/ # Test suite โ”‚ โ”œโ”€โ”€ test_app.py # Application tests โ”‚ โ””โ”€โ”€ test_server.py # MCP server tests โ””โ”€โ”€ run.py # Main entry point Configuration & Dependencies: โ”œโ”€โ”€ requirements.txt # Runtime dependencies โ”œโ”€โ”€ dev-requirements.txt # Development and testing dependencies โ”œโ”€โ”€ pyproject.toml # Project configuration and build settings โ””โ”€โ”€ mcp_config.json # MCP client configuration example Documentation: # Comprehensive docs โ”œโ”€โ”€ docs/ โ”‚ โ”œโ”€โ”€ CONTEXT.md # Project overview โ”‚ โ”œโ”€โ”€ ARCHITECTURE.md # Technical details โ”‚ โ”œโ”€โ”€ API.md # API reference โ”‚ โ”œโ”€โ”€ DEVELOPMENT.md # Development guide โ”‚ โ”œโ”€โ”€ EXAMPLES.md # Usage examples โ”‚ โ””โ”€โ”€ TROUBLESHOOTING.md # Common issues โ””โ”€โ”€ README.md # This file

Documentation

For AI Assistants

For Developers

Enhanced Features

๐ŸŽฏ Intelligent Code Analysis

  • Multi-dimensional code quality assessment

  • Security vulnerability detection

  • Performance bottleneck identification

  • Best practice recommendations

๐Ÿ”„ Context-Aware Refactoring

  • Goal-specific refactoring (performance, readability, maintainability)

  • Language-specific optimizations

  • Preservation of functionality

  • Clear change explanations

๐Ÿ› Advanced Debugging

  • Root cause analysis

  • Step-by-step problem breakdown

  • Fixed code with explanations

  • Prevention strategies

โšก Performance Optimization

  • Algorithmic improvements

  • Memory usage optimization

  • Concurrency recommendations

  • Trade-off analysis

๐Ÿงช Comprehensive Testing

  • Framework-specific test generation

  • Edge case coverage

  • Multiple testing strategies

  • Production-ready test code

Next Steps for Further Enhancement

1. Add More Tools

  • API Documentation Generator: Auto-generate API docs

  • Database Query Optimizer: Optimize SQL queries

  • Dependency Analyzer: Analyze and update dependencies

  • Code Complexity Analyzer: Measure and reduce complexity

2. Enhanced Resources

  • Framework-Specific Guides: React, Django, FastAPI guides

  • Language References: Support for more programming languages

  • Architecture Patterns: Microservices, event-driven, etc.

  • DevOps Best Practices: CI/CD, deployment, monitoring

3. Integration Features

  • Git Integration: Analyze commits, generate changelogs

  • IDE Plugins: VS Code, IntelliJ extensions

  • CI/CD Integration: Automated code analysis in pipelines

  • Slack/Teams Bots: Team collaboration features

4. Advanced AI Features

  • Multi-Model Support: Support for different AI models

  • Custom Training: Fine-tune models for specific codebases

  • Code Similarity Detection: Find similar code patterns

  • Automated Testing: AI-generated integration tests

This enhanced MCP server transforms your simple chat client into a powerful development assistant that can be integrated into any MCP-compatible environment, providing immediate value to developers and AI assistants alike.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/drewtech/mcp-ai-poc'

If you have feedback or need assistance with the MCP directory API, please join our Discord server