Skip to main content
Glama

Noverload MCP Server

MCP_BEST_PRACTICES.md5.49 kB
# Noverload MCP Best Practices ## 🚨 Token Management Guidelines ### Understanding Token Costs When using Noverload MCP with your LLM, be aware that full content can consume significant tokens: - **Article/Blog Post**: 1,000 - 5,000 tokens - **YouTube Transcript**: 5,000 - 20,000 tokens - **PDF Document**: 10,000 - 50,000 tokens - **Reddit Thread**: 2,000 - 10,000 tokens ### Smart Usage Patterns #### 1. **Always Start with Summaries** (Recommended) ```javascript // Good: Search without full content first search_content({ query: "productivity tips", limit: 5, includeFullContent: false // Default, returns summaries only }) ``` #### 2. **Estimate Before Requesting Full Content** ```javascript // First: Check token count estimate_search_tokens({ query: "machine learning", limit: 10 }) // Returns: { estimatedTokens: 45000, recommendation: "..." } // Then: Adjust your request based on estimate search_content({ query: "machine learning", limit: 3, // Reduced from 10 includeFullContent: true }) ``` #### 3. **Use Progressive Retrieval** ```javascript // Step 1: Get summaries and metadata results = search_content({ query: "AI tools", limit: 10 }) // Step 2: Review summaries and relevance scores // Step 3: Get full content for specific items only get_content_details({ contentId: "most-relevant-id" }) ``` #### 4. **Batch Smartly** ```javascript // Use batch endpoint with token limits batch_get_content({ ids: ["id1", "id2", "id3"], includeFullContent: true }) // Automatically manages token usage ``` ## 📊 Cost-Aware Strategies ### Context Window Management Most LLMs have context limits: - **GPT-4 Turbo**: 128k tokens - **Claude 3**: 200k tokens - **Gemini Pro**: 32k tokens **Rule of Thumb**: Keep MCP content under 25% of your context window to leave room for conversation. ### Filtering Strategies #### By Content Type ```javascript // PDFs and YouTube tend to be longest search_content({ query: "quick tips", contentTypes: ["article", "x_post"], // Shorter content limit: 10 }) ``` #### By Date ```javascript // Recent content might be more relevant search_content({ query: "AI news", dateFrom: "2024-01-01", limit: 5 }) ``` #### By Tags ```javascript // Focused results search_content({ query: "learning", tags: ["productivity", "tools"], limit: 5 }) ``` ## 🎯 Common Patterns ### Research Assistant Pattern ```javascript // 1. Broad search for overview const overview = await search_content({ query: "quantum computing", limit: 20, includeFullContent: false }); // 2. Synthesize key themes const synthesis = await synthesize_content({ query: "quantum computing applications", maxSources: 10 }); // 3. Deep dive on specific aspect const detailed = await get_content_details({ contentId: "specific-article-id" }); ``` ### Daily Briefing Pattern ```javascript // Get recent summaries only const briefing = await search_content({ query: "important", dateFrom: "2024-01-20", limit: 10, includeFullContent: false // Keep it brief }); ``` ### Deep Analysis Pattern ```javascript // When you need full content for thorough analysis // 1. Estimate first const estimate = await estimate_search_tokens({ query: "machine learning best practices", limit: 5 }); // 2. If reasonable (<30k tokens), get full content if (estimate.totals.estimatedTokens < 30000) { const full = await search_content({ query: "machine learning best practices", limit: 5, includeFullContent: true }); } ``` ## ⚠️ Warning Signs Watch for these in API responses: ```javascript { metadata: { contentSizeWarning: "⚠️ VERY LARGE: ~75k tokens", safetySuggestion: "Consider reducing limit to 2 results", costEstimate: { gpt4: "$2.25", claude35Sonnet: "$1.13" } } } ``` ## 🚀 Pro Tips 1. **Use Caching**: If you're analyzing the same content repeatedly, save the results locally 2. **Batch by Type**: Group similar content types together for better context 3. **Leverage Metadata**: Use the metadata to decide what needs full content 4. **Smart Synthesis**: Let `synthesize_content` do the heavy lifting across sources 5. **Progressive Enhancement**: Start simple, add detail as needed ## 📈 Token Usage Examples | Operation | Typical Tokens | Cost (GPT-4) | |-----------|---------------|--------------| | List 10 summaries | 2,000 | $0.06 | | Search 5 with full content | 25,000 | $0.75 | | Get single YouTube transcript | 15,000 | $0.45 | | Batch 3 articles | 10,000 | $0.30 | | Synthesize 10 sources | 5,000 | $0.15 | ## 🎓 Example Workflow ```python # Efficient research workflow def research_topic(topic): # 1. Start with estimate (practically free) estimate = estimate_search_tokens(query=topic, limit=10) print(f"Full content would use {estimate['totals']['estimatedTokens']} tokens") # 2. Get summaries first (cheap, ~2k tokens) summaries = search_content(query=topic, limit=10, includeFullContent=False) # 3. Identify top 2-3 most relevant top_items = sorted(summaries['results'], key=lambda x: x['relevanceScore'], reverse=True)[:3] # 4. Get full content for just those (controlled cost) detailed = batch_get_content( ids=[item['id'] for item in top_items], includeFullContent=True ) return detailed ``` Remember: **Start small, expand as needed!** Your LLM's context window is precious real estate. 🏗️

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/drewautomates/noverload-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server