Skip to main content
Glama

get_tmdb_details

Fetch detailed metadata for movies, TV shows, or people using TMDB IDs to support content analysis and information retrieval.

Instructions

Fetches detailed information for a movie, TV show, or person by type and ID. Input: type (required: movie|tv|person), id (required TMDB ID), language (optional ISO 639-1), append (optional comma-separated fields like credits,images). Output: JSON with full item details. Purpose: Obtain in-depth metadata for targeted content analysis by AI agents.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
appendNoComma-separated append_to_response (e.g., credits,images)
idYesTMDB ID
languageNoISO 639-1 code (e.g., en-US)
typeYesThe TMDB media type

Implementation Reference

  • The core handler function that implements the tool logic: fetches TMDB details for specified type and ID using tmdbFetch, supports optional language and append_to_response, formats response as MCP content.
    handler: async ({type, id, language, append}) => { const data = await tmdbFetch(`/${type}/${id}`, {language, append_to_response: append}); return {content: [{type: "text", text: JSON.stringify(data)}]}; },
  • JSON Schema for tool input validation, defining required 'type' (movie/tv/person) and 'id', optional 'language' and 'append'.
    inputSchema: { type: "object", properties: { type: {type: "string", enum: ["movie", "tv", "person"], description: "The TMDB media type"}, id: {type: "number", description: "TMDB ID"}, language: {type: "string", description: "ISO 639-1 code (e.g., en-US)"}, append: {type: "string", description: "Comma-separated append_to_response (e.g., credits,images)"}, }, required: ["type", "id"], additionalProperties: false, },
  • The tool definition object registered in the 'tools' array, which is used by MCP server handlers for list_tools and call_tool requests.
    { name: "get_tmdb_details", description: "Fetches detailed information for a movie, TV show, or person by type and ID. Input: type (required: movie|tv|person), id (required TMDB ID), language (optional ISO 639-1), append (optional comma-separated fields like credits,images). Output: JSON with full item details. Purpose: Obtain in-depth metadata for targeted content analysis by AI agents.", inputSchema: { type: "object", properties: { type: {type: "string", enum: ["movie", "tv", "person"], description: "The TMDB media type"}, id: {type: "number", description: "TMDB ID"}, language: {type: "string", description: "ISO 639-1 code (e.g., en-US)"}, append: {type: "string", description: "Comma-separated append_to_response (e.g., credits,images)"}, }, required: ["type", "id"], additionalProperties: false, }, handler: async ({type, id, language, append}) => { const data = await tmdbFetch(`/${type}/${id}`, {language, append_to_response: append}); return {content: [{type: "text", text: JSON.stringify(data)}]}; }, },

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/drakonkat/wizzy-mcp-tmdb'

If you have feedback or need assistance with the MCP directory API, please join our Discord server