Skip to main content
Glama

get_stock_market_cap

Retrieve market capitalization data for specific KOSPI/KOSDAQ stocks over defined date ranges to analyze company valuation and market performance.

Instructions

Retrieves market capitalization data for a specific stock.

Args: fromdate (str): Start date for retrieval (YYYYMMDD) todate (str): End date for retrieval (YYYYMMDD) ticker (str): Stock ticker symbol Returns: DataFrame: >> get_stock_market_cap("20150720", "20150724", "005930") Market Cap Volume Trading Value Listed Shares Date 2015-07-24 181030885173000 196584 241383636000 147299337 2015-07-23 181767381858000 208965 259446564000 147299337 2015-07-22 184566069261000 268323 333813094000 147299337 2015-07-21 186039062631000 194055 244129106000 147299337 2015-07-20 187806654675000 128928 165366199000 147299337

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
fromdateYes
todateYes
tickerYes

Implementation Reference

  • The handler function decorated with @mcp.tool() implements the get_stock_market_cap tool. It validates dates and ticker, calls pykrx.get_market_cap, converts the DataFrame to a sorted dictionary and returns it.
    @mcp.tool() def get_stock_market_cap(fromdate: Union[str, int], todate: Union[str, int], ticker: Union[str, int]) -> Dict[str, Any]: """Retrieves market capitalization data for a specific stock. Args: fromdate (str): Start date for retrieval (YYYYMMDD) todate (str): End date for retrieval (YYYYMMDD) ticker (str): Stock ticker symbol Returns: DataFrame: >> get_stock_market_cap("20150720", "20150724", "005930") Market Cap Volume Trading Value Listed Shares Date 2015-07-24 181030885173000 196584 241383636000 147299337 2015-07-23 181767381858000 208965 259446564000 147299337 2015-07-22 184566069261000 268323 333813094000 147299337 2015-07-21 186039062631000 194055 244129106000 147299337 2015-07-20 187806654675000 128928 165366199000 147299337 """ # Validate and convert date format def validate_date(date_str: Union[str, int]) -> str: try: if isinstance(date_str, int): date_str = str(date_str) # Convert if in YYYY-MM-DD format if '-' in date_str: parsed_date = datetime.strptime(date_str, '%Y-%m-%d') return parsed_date.strftime('%Y%m%d') # Validate if in YYYYMMDD format datetime.strptime(date_str, '%Y%m%d') return date_str except ValueError: raise ValueError(f"Date must be in YYYYMMDD format. Input value: {date_str}") def validate_ticker(ticker_str: Union[str, int]) -> str: if isinstance(ticker_str, int): return str(ticker_str) return ticker_str try: fromdate = validate_date(fromdate) todate = validate_date(todate) ticker = validate_ticker(ticker) logging.debug(f"Retrieving stock market capitalization data: {ticker}, {fromdate}-{todate}") # Call get_market_cap df = get_market_cap(fromdate, todate, ticker) # Convert DataFrame to dictionary result = df.to_dict(orient='index') # Convert datetime index to string and sort in reverse sorted_items = sorted( ((k.strftime('%Y-%m-%d'), v) for k, v in result.items()), reverse=True ) result = dict(sorted_items) return result except Exception as e: error_message = f"Data retrieval failed: {str(e)}" logging.error(error_message) return {"error": error_message}

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dragon1086/kospi-kosdaq-stock-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server