# π Rhino Grasshopper MCP - AI-Powered Computational Design Assistant
An MCP (Model Context Protocol) server that brings AI capabilities directly into Rhino/Grasshopper workflows, featuring **ML-based automatic layout optimization** - a capability not found in any other publicly available tool.


[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
## π― What Makes This Different?
Unlike basic Grasshopper-to-LLM connectors that only generate code, this tool includes:
### π§ ML-Based Auto Layout (Industry First)
- **DBSCAN clustering** for automatic component grouping
- **K-means clustering** for fixed group counts
- **User pattern learning** with persistent preferences
- **K-NN position prediction** for optimal new component placement
- **Wire crossing minimization** algorithm
### π AI Mentoring System
- **Performance prediction**: Estimates optimization impact (e.g., "15-30% improvement expected")
- **Pattern detection**: Identifies inefficient patterns and suggests better alternatives
- **Auto-grouping**: Analyzes wire connectivity to suggest logical component groups
- **Layout anomaly detection**: Finds isolated, overlapping, or misaligned components
### π Live Rhino Integration
- Real-time connection to running Rhino/Grasshopper instances
- Execute Python code remotely in Rhino
- Get canvas state and trigger solves
- No file-based workflow required
## π Features Overview
| Category | Features |
|----------|----------|
| **Rhino Bridge** | Live connection, remote Python execution, canvas state |
| **GH File Ops** | Parse .gh/.ghx files, analyze structure, extract components |
| **Component Library** | Searchable database of 500+ GH components |
| **Code Generation** | GHPython and C# script templates |
| **AI Mentoring** | Performance prediction, alternatives, auto-grouping |
| **ML Layout** | Clustering, position prediction, crossing minimization |
## π οΈ Installation
```bash
git clone https://github.com/dongwoosuk/rhino-grasshopper-mcp.git
cd rhino-grasshopper-mcp
python -m venv .venv
.venv\Scripts\activate # Windows
pip install -e .
```
## βοΈ Configuration
Add to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"grasshopper": {
"command": "path/to/rhino_grasshopper_mcp/.venv/Scripts/python.exe",
"args": ["-m", "rhino_grasshopper_mcp"]
}
}
}
```
## π Live Rhino Connection (Optional)
To enable real-time Rhino/Grasshopper control:
1. Open Rhino 7 or 8
2. Run `EditPythonScript` command
3. Open and run `rhino_listener/rhino_bridge_listener.py`
4. You'll see: `Rhino Bridge Listener started on localhost:8080`
## π Available Tools
### Rhino Bridge (requires listener)
| Tool | Description |
|------|-------------|
| `rhino_status` | Check connection status |
| `rhino_execute_python` | Execute Python in Rhino |
| `gh_canvas_state` | Get current canvas state |
| `gh_load_definition` | Load a .gh file |
| `gh_solve` | Trigger recompute |
### AI Mentoring Tools
| Tool | Description |
|------|-------------|
| `predict_performance` | Predict optimization impact |
| `suggest_alternatives` | Detect patterns, suggest better approaches |
| `auto_group` | Analyze connectivity, suggest groupings |
| `ml_layout_analysis` | ML clustering analysis |
| `predict_component_position` | K-NN based position prediction |
### Pattern Detection Examples
The `suggest_alternatives` tool detects these inefficient patterns:
| Pattern | Better Alternative |
|---------|-------------------|
| Multiple Move components | Single Transform Matrix |
| Flatten + Graft sequence | Path Mapper |
| Python loops for geometry | Native GH components |
| Serial Boolean operations | Batch Boolean |
| Expression for simple math | Native Math components |
## ποΈ Architecture
```
rhino_grasshopper_mcp/
βββ rhino_grasshopper_mcp/
β βββ bridge.py # Main MCP server
β βββ rhino_bridge.py # TCP client to Rhino
β βββ gh_file_ops.py # .gh/.ghx parsing
β βββ component_library.py # Component database
β βββ code_generator.py # Code templates
β βββ mentoring/
β βββ ml_layout_learner.py # DBSCAN/K-means
β βββ advanced_layout_learner.py # Advanced learning
β βββ persistent_layout_learner.py # User patterns
β βββ performance_predictor.py # Optimization prediction
β βββ alternative_suggester.py # Pattern detection
β βββ auto_grouper.py # Wire-based grouping
β βββ wire_crossing_detector.py # Crossing detection
β βββ crossing_minimizer.py # Layout optimization
βββ rhino_listener/
β βββ rhino_bridge_listener.py # Run IN Rhino
βββ pyproject.toml
```
## π€ ML Layout System Details
### How It Works
1. **Feature Extraction**: Analyzes component positions, types, and connections
2. **Clustering**: Groups components using DBSCAN or K-means
3. **Pattern Learning**: Stores user preferences in `layout_preferences.json`
4. **Position Prediction**: Uses K-NN to suggest optimal positions for new components
5. **Anomaly Detection**: Identifies layout issues (isolated nodes, overlaps, wrong flow direction)
### Supported Analyses
```python
# Example: ML clustering analysis
result = ml_layout_analysis(gh_file_path, method="dbscan")
# Returns: clusters, anomalies, optimization suggestions
# Example: Position prediction
result = predict_component_position(gh_file_path, "Panel", near_component="Slider")
# Returns: predicted X, Y coordinates based on learned patterns
```
## π― Use Cases
- **Design Automation**: Let AI handle repetitive Grasshopper tasks
- **Code Review**: Get suggestions for optimizing definitions
- **Learning**: AI mentoring for Grasshopper best practices
- **Layout Cleanup**: Automatic organization of messy definitions
- **Team Standards**: Consistent component arrangement across projects
## π License
MIT License - see [LICENSE](LICENSE) file.
## π Acknowledgments
- Built on the [Model Context Protocol](https://github.com/anthropics/anthropic-cookbook/tree/main/misc/model_context_protocol) by Anthropic
- Grasshopper by David Rutten / McNeel
- scikit-learn for ML algorithms
## π¬ Contact
Dongwoo Suk - Computational Design Specialist
- GitHub: [dongwoosuk](https://github.com/dongwoosuk)
- LinkedIn: [dongwoosuk](https://www.linkedin.com/in/dongwoosuk/)