Skip to main content
Glama

Elrond MCP

README.md9.1 kB
# Elrond MCP - Thinking Augmentation Server A Model Context Protocol (MCP) server that provides hierarchical LLM critique and synthesis for enhanced decision-making and idea evaluation. > [!WARNING] > **Preview Software**: This is experimental software in active development and is not intended for production use. Features may change, break, or be removed without notice. Use at your own risk. ## Overview Elrond MCP implements a multi-agent thinking augmentation system that analyzes proposals through three specialized critique perspectives (positive, neutral, negative) and synthesizes them into comprehensive, actionable insights. This approach helps overcome single-model biases and provides more thorough analysis of complex ideas. ## Features - **Parallel Critique Analysis**: Three specialized agents analyze proposals simultaneously from different perspectives - **Structured Responses**: Uses Pydantic models and `instructor` library for reliable, structured outputs - **Google AI Integration**: Leverages Gemini 2.5 Flash for critiques and Gemini 2.5 Pro for synthesis - **MCP Compliance**: Full Model Context Protocol support for seamless integration with AI assistants - **Comprehensive Analysis**: Covers feasibility, risks, benefits, implementation, stakeholder impact, and resource requirements - **Consensus Building**: Identifies areas of agreement and disagreement across perspectives ## Architecture ``` ┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ │ Positive │ │ Neutral │ │ Negative │ │ Critique │ │ Critique │ │ Critique │ │ Agent │ │ Agent │ │ Agent │ │ │ │ │ │ │ │ Gemini 2.5 │ │ Gemini 2.5 │ │ Gemini 2.5 │ │ Flash │ │ Flash │ │ Flash │ └─────────┬───────┘ └─────────┬───────┘ └─────────┬───────┘ │ │ │ │ │ │ └──────────────────────┼──────────────────────┘ │ ▼ ┌─────────────────────────┐ │ Synthesis Agent │ │ │ │ Gemini 2.5 Pro │ │ │ │ │ │ Consensus + Summary │ └─────────────────────────┘ ``` ## Installation ### Prerequisites - Python 3.13 or higher - Google AI API key (get one at [Google AI Studio](https://aistudio.google.com/)) ### Setup 1. **Clone the repository:** ```bash git clone <repository-url> cd elrond-mcp ``` 2. **Install dependencies:** ```bash # Using uv (recommended) uv sync --dev --all-extras # Or using pip pip install -e .[dev] ``` 3. **Configure API key:** ```bash export GEMINI_API_KEY="your-gemini-api-key-here" # Or create a .env file echo "GEMINI_API_KEY=your-gemini-api-key-here" > .env ``` ## Usage ### Running the Server #### Development Mode ```bash # Using uv uv run python main.py # Using MCP CLI (if installed) mcp dev elrond_mcp/server.py ``` #### Production Mode ```bash # Direct execution python main.py # Or via package entry point elrond-mcp ``` ### Integration with Claude Desktop 1. **Install for Claude Desktop:** ```bash mcp install elrond_mcp/server.py --name "Elrond Thinking Augmentation" ``` 2. **Manual Configuration:** Add to your Claude Desktop MCP settings: ```json { "elrond-mcp": { "command": "python", "args": ["/path/to/elrond-mcp/main.py"], "env": { "GEMINI_API_KEY": "your-api-key-here" } } } ``` ### Using the Tools #### Augment Thinking Tool Analyze any proposal through multi-perspective critique: ``` Use the "consult_the_council" tool with this proposal: # Project Alpha: AI-Powered Customer Service ## Overview Implement an AI chatbot to handle 80% of customer service inquiries, reducing response time from 2 hours to 30 seconds. ## Goals - Reduce operational costs by 40% - Improve customer satisfaction scores - Free up human agents for complex issues ## Implementation - Deploy GPT-4 based chatbot - Integrate with existing CRM - 3-month rollout plan - $200K initial investment ``` #### Check System Status Tool Monitor the health and configuration of the thinking augmentation system: ``` Use the "check_system_status" tool to verify: - API key configuration - Model availability - System health ``` ## Response Structure ### Critique Response Each critique agent provides: - **Executive Summary**: Brief overview of the perspective - **Structured Analysis**: - Feasibility assessment - Risk identification - Benefit analysis - Implementation considerations - Stakeholder impact - Resource requirements - **Key Insights**: 3-5 critical observations - **Confidence Level**: Numerical confidence (0.0-1.0) ### Synthesis Response The synthesis agent provides: - **Executive Summary**: High-level recommendation - **Consensus View**: - Areas of agreement - Areas of disagreement - Balanced assessment - Critical considerations - **Recommendation**: Overall guidance - **Next Steps**: Concrete action items - **Uncertainty Flags**: Areas needing more information - **Overall Confidence**: Synthesis confidence level ## Development ### Project Structure ``` elrond-mcp/ ├── elrond_mcp/ │ ├── __init__.py │ ├── server.py # MCP server implementation │ ├── agents.py # Critique and synthesis agents │ ├── client.py # Centralized Google AI client management │ └── models.py # Pydantic data models ├── scripts/ # Development scripts │ └── check.sh # Quality check script ├── tests/ # Test suite ├── main.py # Entry point ├── pyproject.toml # Project configuration └── README.md ``` ### Running Tests ```bash # Using uv uv run pytest # Using pip pytest ``` ### Code Formatting ```bash # Format and lint code uv run ruff format . uv run ruff check --fix . # Type checking uv run mypy elrond_mcp/ ``` ### Development Script For convenience, use the provided script to run all quality checks: ```bash # Run all quality checks (lint, format, test) ./scripts/check.sh ``` This script will: - Sync dependencies - Run Ruff linter with auto-fix - Format code with Ruff - Execute the full test suite - Perform final lint check - Provide a pre-commit checklist ## Configuration ### Environment Variables - `GEMINI_API_KEY`: Required Google AI API key - `LOG_LEVEL`: Logging level (default: INFO) ### Model Configuration - **Critique Agents**: `gemini-2.5-flash` - **Synthesis Agent**: `gemini-2.5-pro` Models can be customized by modifying the agent initialization in `agents.py`. ## Troubleshooting ### Common Issues 1. **API Key Not Found** ``` Error: Google AI API key is required ``` **Solution**: Set the `GEMINI_API_KEY` environment variable 2. **Empty Proposal Error** ``` Error: Proposal cannot be empty ``` **Solution**: Ensure your proposal is at least 10 characters long 3. **Model Rate Limits** ``` Error: Rate limit exceeded ``` **Solution**: Wait a moment and retry, or check your Google AI quota 4. **Validation Errors** ``` ValidationError: ... ``` **Solution**: The LLM response didn't match expected structure. This is usually temporary - retry the request ### Debugging Enable debug logging: ```bash export LOG_LEVEL=DEBUG export GEMINI_API_KEY=your-api-key-here python main.py ``` Check system status: ```python # Use the check_system_status tool to verify configuration ``` ## Contributing 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Add tests for new functionality 5. Run the test suite 6. Submit a pull request ## License See LICENSE ## Support For issues and questions: - Check the troubleshooting section above - Review the logs for detailed error information - Open an issue on the repository ## Roadmap - [ ] Support for additional LLM providers (OpenAI, Anthropic) - [ ] Custom critique perspectives and personas - [ ] Performance optimization and caching - [ ] Advanced synthesis algorithms

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dogonthehorizon/elrond-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server