/**
* Advanced Performance Analytics for WordPress MCP Server
* Provides insights, predictions, and optimization recommendations
*/
import { PerformanceMetrics } from "./PerformanceMonitor.js";
import { MetricsCollector } from "./MetricsCollector.js";
export interface AnalyticsConfig {
enablePredictiveAnalysis: boolean;
enableAnomalyDetection: boolean;
enableTrendAnalysis: boolean;
lookbackPeriod: number; // in milliseconds
sensitivityLevel: "low" | "medium" | "high";
}
export interface PerformanceTrend {
metric: string;
direction: "improving" | "declining" | "stable";
changeRate: number; // percentage change
confidence: number; // 0-1
prediction: {
nextValue: number;
timeframe: number; // milliseconds
confidence: number;
};
}
export interface PerformanceAnomaly {
timestamp: number;
metric: string;
expectedValue: number;
actualValue: number;
deviation: number; // percentage
severity: "minor" | "moderate" | "major" | "critical";
possibleCauses: string[];
}
export interface PerformanceInsight {
id: string;
category: "optimization" | "scaling" | "maintenance" | "alert";
priority: "low" | "medium" | "high" | "critical";
title: string;
description: string;
impact: "performance" | "reliability" | "cost" | "user_experience";
recommendation: string;
estimatedImprovement: string;
implementationEffort: "low" | "medium" | "high";
relatedMetrics: string[];
}
export interface BenchmarkComparison {
category: string;
currentValue: number;
benchmarkValue: number;
percentile: number; // Where current performance ranks (0-100)
status: "excellent" | "good" | "average" | "below_average" | "poor";
improvement: number; // How much improvement needed to reach next tier
}
/**
* Performance Analytics Engine
*/
export class PerformanceAnalytics {
private collector: MetricsCollector;
private config: AnalyticsConfig;
private historicalData: PerformanceMetrics[] = [];
private detectedAnomalies: PerformanceAnomaly[] = [];
private generatedInsights: PerformanceInsight[] = [];
// Performance benchmarks (based on industry standards)
private benchmarks = {
responseTime: {
excellent: 200, // <200ms
good: 500, // 200-500ms
average: 1000, // 500ms-1s
below_average: 2000, // 1-2s
poor: Infinity, // >2s
},
cacheHitRate: {
excellent: 0.95, // >95%
good: 0.85, // 85-95%
average: 0.7, // 70-85%
below_average: 0.5, // 50-70%
poor: 0, // <50%
},
errorRate: {
excellent: 0.001, // <0.1%
good: 0.01, // 0.1-1%
average: 0.02, // 1-2%
below_average: 0.05, // 2-5%
poor: Infinity, // >5%
},
memoryUsage: {
excellent: 50, // <50%
good: 70, // 50-70%
average: 80, // 70-80%
below_average: 90, // 80-90%
poor: 100, // >90%
},
};
constructor(collector: MetricsCollector, config: Partial<AnalyticsConfig> = {}) {
this.collector = collector;
this.config = {
enablePredictiveAnalysis: true,
enableAnomalyDetection: true,
enableTrendAnalysis: true,
lookbackPeriod: 24 * 60 * 60 * 1000, // 24 hours
sensitivityLevel: "medium",
...config,
};
}
/**
* Add historical data point for analysis
*/
addDataPoint(metrics: PerformanceMetrics): void {
this.historicalData.push(metrics);
// Limit historical data to lookback period
const cutoff = Date.now() - this.config.lookbackPeriod;
this.historicalData = this.historicalData.filter((data) => data.system.uptime > cutoff);
// Run analysis on new data
if (this.config.enableAnomalyDetection) {
this.detectAnomalies(metrics);
}
}
/**
* Analyze performance trends
*/
analyzeTrends(): PerformanceTrend[] {
if (!this.config.enableTrendAnalysis || this.historicalData.length < 5) {
return [];
}
const trends: PerformanceTrend[] = [];
// Analyze response time trend
trends.push(
this.analyzeTrend(
"responseTime",
this.historicalData.map((d) => d.requests.averageResponseTime),
),
);
// Analyze cache hit rate trend
trends.push(
this.analyzeTrend(
"cacheHitRate",
this.historicalData.map((d) => d.cache.hitRate),
),
);
// Analyze error rate trend
trends.push(
this.analyzeTrend(
"errorRate",
this.historicalData.map((d) => (d.requests.total > 0 ? d.requests.failed / d.requests.total : 0)),
),
);
// Analyze memory usage trend
trends.push(
this.analyzeTrend(
"memoryUsage",
this.historicalData.map((d) => d.system.memoryUsage),
),
);
// Analyze request volume trend
trends.push(
this.analyzeTrend(
"requestVolume",
this.historicalData.map((d) => d.requests.requestsPerSecond),
),
);
return trends;
}
/**
* Generate performance insights
*/
generateInsights(): PerformanceInsight[] {
const insights: PerformanceInsight[] = [];
const currentMetrics = this.collector.collectCurrentMetrics();
const trends = this.analyzeTrends();
// Cache optimization insights
if (currentMetrics.cache.hitRate < 0.8) {
insights.push({
id: "cache-optimization-1",
category: "optimization",
priority: "high",
title: "Improve Cache Hit Rate",
description: `Current cache hit rate is ${(currentMetrics.cache.hitRate * 100).toFixed(
1,
)}%, which is below optimal performance.`,
impact: "performance",
recommendation: "Implement cache warming strategies and optimize TTL values for frequently accessed data.",
estimatedImprovement: "20-40% reduction in response times",
implementationEffort: "medium",
relatedMetrics: ["cacheHitRate", "responseTime"],
});
}
// Response time insights
if (currentMetrics.requests.averageResponseTime > 1000) {
insights.push({
id: "response-time-1",
category: "optimization",
priority: "high",
title: "Reduce Response Times",
description: `Average response time of ${currentMetrics.requests.averageResponseTime.toFixed(
0,
)}ms is above recommended threshold.`,
impact: "user_experience",
recommendation: "Enable aggressive caching, optimize database queries, or consider upgrading server resources.",
estimatedImprovement: "50-70% reduction in response times",
implementationEffort: "medium",
relatedMetrics: ["responseTime", "cacheHitRate"],
});
}
// Memory usage insights
if (currentMetrics.system.memoryUsage > 80) {
insights.push({
id: "memory-usage-1",
category: "scaling",
priority: "medium",
title: "Memory Usage Optimization",
description: `Memory usage at ${currentMetrics.system.memoryUsage}% is approaching limits.`,
impact: "reliability",
recommendation: "Increase cache size limits, implement cache eviction policies, or scale server resources.",
estimatedImprovement: "Improved system stability",
implementationEffort: "low",
relatedMetrics: ["memoryUsage", "cacheSize"],
});
}
// Tool usage insights
const toolMetrics = currentMetrics.tools;
if (Object.keys(toolMetrics.toolUsageCount).length > 0) {
const mostUsed = Object.entries(toolMetrics.toolUsageCount)
.sort(([, a], [, b]) => b - a)
.slice(0, 3);
insights.push({
id: "tool-usage-1",
category: "optimization",
priority: "low",
title: "Optimize Frequently Used Tools",
description: `Most used tools: ${mostUsed
.map(([tool]) => tool)
.join(", ")}. Consider optimizing these workflows.`,
impact: "performance",
recommendation: "Create cached workflows or batch operations for frequently used tools.",
estimatedImprovement: "10-20% reduction in API calls",
implementationEffort: "high",
relatedMetrics: ["toolUsage", "requestVolume"],
});
}
// Trend-based insights
const responseTimeTrend = trends.find((t) => t.metric === "responseTime");
if (responseTimeTrend && responseTimeTrend.direction === "declining" && responseTimeTrend.changeRate > 10) {
insights.push({
id: "trend-response-time-1",
category: "alert",
priority: "high",
title: "Response Time Degradation Detected",
description: `Response times are declining at ${responseTimeTrend.changeRate.toFixed(1)}% rate.`,
impact: "performance",
recommendation: "Investigate recent changes, check WordPress site health, and monitor resource usage.",
estimatedImprovement: "Prevent further degradation",
implementationEffort: "medium",
relatedMetrics: ["responseTime", "errorRate"],
});
}
this.generatedInsights = insights;
return insights;
}
/**
* Compare performance against benchmarks
*/
benchmarkPerformance(): BenchmarkComparison[] {
const currentMetrics = this.collector.collectCurrentMetrics();
const comparisons: BenchmarkComparison[] = [];
// Response time benchmark
comparisons.push(
this.createBenchmarkComparison(
"Response Time",
currentMetrics.requests.averageResponseTime,
this.benchmarks.responseTime,
false, // lower is better
),
);
// Cache hit rate benchmark
comparisons.push(
this.createBenchmarkComparison(
"Cache Hit Rate",
currentMetrics.cache.hitRate * 100,
Object.fromEntries(Object.entries(this.benchmarks.cacheHitRate).map(([k, v]) => [k, v * 100])),
true, // higher is better
),
);
// Error rate benchmark
const errorRate =
currentMetrics.requests.total > 0 ? (currentMetrics.requests.failed / currentMetrics.requests.total) * 100 : 0;
comparisons.push(
this.createBenchmarkComparison(
"Error Rate",
errorRate,
Object.fromEntries(Object.entries(this.benchmarks.errorRate).map(([k, v]) => [k, v * 100])),
false, // lower is better
),
);
// Memory usage benchmark
comparisons.push(
this.createBenchmarkComparison(
"Memory Usage",
currentMetrics.system.memoryUsage,
this.benchmarks.memoryUsage,
false, // lower is better
),
);
return comparisons;
}
/**
* Predict future performance based on trends
*/
predictPerformance(timeframeMinutes: number = 60): {
predictions: Array<{
metric: string;
currentValue: number;
predictedValue: number;
confidence: number;
trend: "improving" | "declining" | "stable";
}>;
alerts: string[];
} {
if (!this.config.enablePredictiveAnalysis) {
return { predictions: [], alerts: [] };
}
const trends = this.analyzeTrends();
const predictions: Array<{
metric: string;
currentValue: number;
predictedValue: number;
confidence: number;
trend: "improving" | "declining" | "stable";
}> = [];
const alerts: string[] = [];
for (const trend of trends) {
const _timeframeMs = timeframeMinutes * 60 * 1000;
const predictedValue = trend.prediction.nextValue;
predictions.push({
metric: trend.metric,
currentValue: this.getCurrentMetricValue(trend.metric),
predictedValue,
confidence: trend.confidence,
trend: trend.direction,
});
// Generate alerts for concerning predictions
if (trend.metric === "responseTime" && predictedValue > 2000 && trend.direction === "declining") {
alerts.push(`Response times predicted to exceed 2s in ${timeframeMinutes} minutes`);
}
if (trend.metric === "cacheHitRate" && predictedValue < 0.5 && trend.direction === "declining") {
alerts.push(`Cache hit rate predicted to drop below 50% in ${timeframeMinutes} minutes`);
}
if (trend.metric === "memoryUsage" && predictedValue > 90 && trend.direction === "declining") {
alerts.push(`Memory usage predicted to exceed 90% in ${timeframeMinutes} minutes`);
}
}
return { predictions, alerts };
}
/**
* Generate optimization recommendations with ROI estimates
*/
generateOptimizationPlan(): {
quickWins: PerformanceInsight[];
mediumTerm: PerformanceInsight[];
longTerm: PerformanceInsight[];
estimatedROI: {
performanceGain: number; // percentage
implementationCost: "low" | "medium" | "high";
timeToValue: number; // days
};
} {
const insights = this.generateInsights();
const quickWins = insights.filter(
(i) => i.implementationEffort === "low" && ["high", "critical"].includes(i.priority),
);
const mediumTerm = insights.filter((i) => i.implementationEffort === "medium");
const longTerm = insights.filter((i) => i.implementationEffort === "high");
// Estimate ROI based on current performance issues
const currentMetrics = this.collector.collectCurrentMetrics();
let estimatedGain = 0;
if (currentMetrics.cache.hitRate < 0.8) estimatedGain += 30;
if (currentMetrics.requests.averageResponseTime > 1000) estimatedGain += 40;
if (currentMetrics.system.memoryUsage > 80) estimatedGain += 20;
return {
quickWins,
mediumTerm,
longTerm,
estimatedROI: {
performanceGain: Math.min(estimatedGain, 80), // Cap at 80%
implementationCost: quickWins.length > 2 ? "low" : mediumTerm.length > 2 ? "medium" : "high",
timeToValue: quickWins.length > 0 ? 1 : mediumTerm.length > 0 ? 7 : 30,
},
};
}
/**
* Get anomalies detected in recent data
*/
getAnomalies(severity?: string): PerformanceAnomaly[] {
if (severity) {
return this.detectedAnomalies.filter((a) => a.severity === severity);
}
return [...this.detectedAnomalies];
}
/**
* Export comprehensive analytics report
*/
exportAnalyticsReport(): {
timestamp: string;
summary: {
overallHealth: string;
keyInsights: number;
criticalAlerts: number;
performanceScore: number;
};
trends: PerformanceTrend[];
benchmarks: BenchmarkComparison[];
insights: PerformanceInsight[];
anomalies: PerformanceAnomaly[];
predictions: Array<{
metric: string;
currentValue: number;
predictedValue: number;
confidence: number;
trend: "improving" | "declining" | "stable";
}>;
optimizationPlan: Record<string, unknown>;
} {
const currentMetrics = this.collector.collectCurrentMetrics();
const performanceScore = this.calculatePerformanceScore(currentMetrics);
return {
timestamp: new Date().toISOString(),
summary: {
overallHealth: this.calculateOverallHealth(performanceScore),
keyInsights: this.generatedInsights.length,
criticalAlerts: this.generatedInsights.filter((i) => i.priority === "critical").length,
performanceScore,
},
trends: this.analyzeTrends(),
benchmarks: this.benchmarkPerformance(),
insights: this.generateInsights(),
anomalies: this.getAnomalies(),
predictions: this.predictPerformance().predictions,
optimizationPlan: this.generateOptimizationPlan(),
};
}
/**
* Analyze trend for a specific metric
*/
private analyzeTrend(metricName: string, values: number[]): PerformanceTrend {
if (values.length < 3) {
return {
metric: metricName,
direction: "stable",
changeRate: 0,
confidence: 0,
prediction: {
nextValue: values[values.length - 1] || 0,
timeframe: 0,
confidence: 0,
},
};
}
// Calculate linear regression
const n = values.length;
const x = Array.from({ length: n }, (_, i) => i);
const y = values;
const sumX = x.reduce((a, b) => a + b, 0);
const sumY = y.reduce((a, b) => a + b, 0);
const sumXY = x.map((xi, i) => xi * y[i]).reduce((a, b) => a + b, 0);
const sumXX = x.map((xi) => xi * xi).reduce((a, b) => a + b, 0);
const slope = (n * sumXY - sumX * sumY) / (n * sumXX - sumX * sumX);
const intercept = (sumY - slope * sumX) / n;
// Calculate R-squared for confidence
const yMean = sumY / n;
const totalSumSquares = y.map((yi) => Math.pow(yi - yMean, 2)).reduce((a, b) => a + b, 0);
const residualSumSquares = y
.map((yi, i) => {
const predicted = slope * x[i] + intercept;
return Math.pow(yi - predicted, 2);
})
.reduce((a, b) => a + b, 0);
const rSquared = 1 - residualSumSquares / totalSumSquares;
// Determine direction and change rate
const currentValue = values[values.length - 1];
const previousValue = values[values.length - 2];
const changeRate = Math.abs((currentValue - previousValue) / previousValue) * 100;
let direction: "improving" | "declining" | "stable" = "stable";
if (Math.abs(slope) > 0.1) {
// For metrics where lower is better (response time, error rate)
if (["responseTime", "errorRate", "memoryUsage"].includes(metricName)) {
direction = slope < 0 ? "improving" : "declining";
} else {
// For metrics where higher is better (cache hit rate)
direction = slope > 0 ? "improving" : "declining";
}
}
// Predict next value
const nextValue = slope * n + intercept;
return {
metric: metricName,
direction,
changeRate,
confidence: Math.max(0, Math.min(1, rSquared)),
prediction: {
nextValue: Math.max(0, nextValue),
timeframe: 30 * 60 * 1000, // 30 minutes
confidence: Math.max(0, Math.min(1, rSquared * 0.8)), // Slightly lower confidence for predictions
},
};
}
/**
* Detect anomalies in current metrics
*/
private detectAnomalies(metrics: PerformanceMetrics): void {
if (this.historicalData.length < 10) return; // Need historical context
const recentData = this.historicalData.slice(-10);
// Check response time anomalies
const responseTimes = recentData.map((d) => d.requests.averageResponseTime);
this.checkMetricAnomaly(
"responseTime",
metrics.requests.averageResponseTime,
responseTimes,
"Response time spike detected",
);
// Check cache hit rate anomalies
const hitRates = recentData.map((d) => d.cache.hitRate);
this.checkMetricAnomaly("cacheHitRate", metrics.cache.hitRate, hitRates, "Cache hit rate drop detected");
// Check error rate anomalies
const errorRates = recentData.map((d) => (d.requests.total > 0 ? d.requests.failed / d.requests.total : 0));
const currentErrorRate = metrics.requests.total > 0 ? metrics.requests.failed / metrics.requests.total : 0;
this.checkMetricAnomaly("errorRate", currentErrorRate, errorRates, "Error rate spike detected");
}
/**
* Check if a metric value is anomalous
*/
private checkMetricAnomaly(
metricName: string,
currentValue: number,
historicalValues: number[],
description: string,
): void {
if (historicalValues.length < 5) return;
const mean = historicalValues.reduce((a, b) => a + b, 0) / historicalValues.length;
const variance = historicalValues.reduce((acc, val) => acc + Math.pow(val - mean, 2), 0) / historicalValues.length;
const standardDeviation = Math.sqrt(variance);
// Calculate z-score
const zScore = Math.abs((currentValue - mean) / standardDeviation);
// Determine sensitivity threshold
let threshold = 2; // Default for medium sensitivity
if (this.config.sensitivityLevel === "low") threshold = 3;
if (this.config.sensitivityLevel === "high") threshold = 1.5;
if (zScore > threshold) {
const deviation = ((currentValue - mean) / mean) * 100;
let severity: "minor" | "moderate" | "major" | "critical" = "minor";
if (zScore > 4) severity = "critical";
else if (zScore > 3) severity = "major";
else if (zScore > 2.5) severity = "moderate";
const anomaly: PerformanceAnomaly = {
timestamp: Date.now(),
metric: metricName,
expectedValue: mean,
actualValue: currentValue,
deviation,
severity,
possibleCauses: this.generatePossibleCauses(metricName, currentValue > mean),
};
this.detectedAnomalies.push(anomaly);
// Limit anomaly history
if (this.detectedAnomalies.length > 100) {
this.detectedAnomalies = this.detectedAnomalies.slice(-50);
}
}
}
/**
* Generate possible causes for anomalies
*/
private generatePossibleCauses(metricName: string, isIncrease: boolean): string[] {
const causes: string[] = [];
if (metricName === "responseTime" && isIncrease) {
causes.push("High server load", "Database performance issues", "Network latency", "Cache miss increase");
} else if (metricName === "cacheHitRate" && !isIncrease) {
causes.push("Cache invalidation event", "New data requests", "Cache size limit reached", "TTL expiration");
} else if (metricName === "errorRate" && isIncrease) {
causes.push("WordPress site issues", "Authentication problems", "Network connectivity", "Plugin conflicts");
}
return causes;
}
/**
* Create benchmark comparison
*/
private createBenchmarkComparison(
category: string,
currentValue: number,
benchmarks: Record<string, unknown>,
higherIsBetter: boolean,
): BenchmarkComparison {
let status: "excellent" | "good" | "average" | "below_average" | "poor" = "poor";
let percentile = 0;
let improvement = 0;
if (higherIsBetter) {
if (currentValue >= (benchmarks.excellent as number)) status = "excellent";
else if (currentValue >= (benchmarks.good as number)) status = "good";
else if (currentValue >= (benchmarks.average as number)) status = "average";
else if (currentValue >= (benchmarks.below_average as number)) status = "below_average";
// Calculate improvement needed
if (status !== "excellent") {
const nextTier =
status === "good"
? (benchmarks.excellent as number)
: status === "average"
? (benchmarks.good as number)
: status === "below_average"
? (benchmarks.average as number)
: (benchmarks.below_average as number);
improvement = nextTier - currentValue;
}
} else {
if (currentValue <= (benchmarks.excellent as number)) status = "excellent";
else if (currentValue <= (benchmarks.good as number)) status = "good";
else if (currentValue <= (benchmarks.average as number)) status = "average";
else if (currentValue <= (benchmarks.below_average as number)) status = "below_average";
// Calculate improvement needed
if (status !== "excellent") {
const nextTier =
status === "good"
? benchmarks.excellent
: status === "average"
? benchmarks.good
: status === "below_average"
? benchmarks.average
: benchmarks.below_average;
improvement = currentValue - (nextTier as number);
}
}
// Calculate percentile (simplified)
percentile =
status === "excellent"
? 95
: status === "good"
? 80
: status === "average"
? 60
: status === "below_average"
? 30
: 10;
return {
category,
currentValue,
benchmarkValue: benchmarks.excellent as number,
percentile,
status,
improvement,
};
}
/**
* Get current value for a metric
*/
private getCurrentMetricValue(metricName: string): number {
const current = this.collector.collectCurrentMetrics();
switch (metricName) {
case "responseTime":
return current.requests.averageResponseTime;
case "cacheHitRate":
return current.cache.hitRate;
case "errorRate":
return current.requests.total > 0 ? current.requests.failed / current.requests.total : 0;
case "memoryUsage":
return current.system.memoryUsage;
case "requestVolume":
return current.requests.requestsPerSecond;
default:
return 0;
}
}
/**
* Calculate overall performance score
*/
private calculatePerformanceScore(metrics: PerformanceMetrics): number {
let score = 100;
// Response time (30% weight)
if (metrics.requests.averageResponseTime > 2000) score -= 30;
else if (metrics.requests.averageResponseTime > 1000) score -= 15;
else if (metrics.requests.averageResponseTime > 500) score -= 5;
// Error rate (25% weight)
const errorRate = metrics.requests.total > 0 ? metrics.requests.failed / metrics.requests.total : 0;
if (errorRate > 0.05) score -= 25;
else if (errorRate > 0.02) score -= 15;
else if (errorRate > 0.01) score -= 5;
// Cache performance (25% weight)
if (metrics.cache.hitRate < 0.5) score -= 25;
else if (metrics.cache.hitRate < 0.7) score -= 15;
else if (metrics.cache.hitRate < 0.85) score -= 5;
// System resources (20% weight)
if (metrics.system.memoryUsage > 90) score -= 20;
else if (metrics.system.memoryUsage > 80) score -= 10;
else if (metrics.system.memoryUsage > 70) score -= 5;
return Math.max(0, score);
}
/**
* Calculate overall health status
*/
private calculateOverallHealth(score: number): string {
if (score >= 90) return "excellent";
if (score >= 75) return "good";
if (score >= 60) return "fair";
if (score >= 40) return "poor";
return "critical";
}
}