Skip to main content
Glama

mcp-optimizer

test_simple_stress.pyโ€ข1.73 kB
"""Simple stress tests for optimization solvers.""" import logging import multiprocessing import psutil import pytest from mcp_optimizer.solvers.ortools_solver import ORToolsSolver logger = logging.getLogger(__name__) @pytest.mark.stress class TestStressTestConfiguration: """Configuration and utilities for stress testing.""" def test_system_requirements_check(self): """Verify system has sufficient resources for stress testing.""" # Check available memory memory = psutil.virtual_memory() available_gb = memory.available / (1024**3) assert available_gb >= 2, ( f"Insufficient memory for stress tests: {available_gb:.1f} GB available" ) # Check CPU cores cpu_count = multiprocessing.cpu_count() assert cpu_count >= 2, f"Insufficient CPU cores for stress tests: {cpu_count} cores" logger.info(f"System check passed: {available_gb:.1f} GB memory, {cpu_count} CPU cores") def test_stress_test_markers(self): """Verify stress test markers are properly configured.""" # This test ensures stress tests can be run selectively # Run with: pytest -m stress assert True @pytest.mark.stress def test_basic_solver_stress(self): """Basic stress test for solver functionality.""" solver = ORToolsSolver() # Simple assignment problem workers = ["w1", "w2"] tasks = ["t1", "t2"] costs = [[1, 2], [3, 4]] result = solver.solve_assignment_problem(workers, tasks, costs) assert result is not None assert result.get("status").value in ["optimal", "feasible"] logger.info("Basic solver stress test passed")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dmitryanchikov/mcp-optimizer'

If you have feedback or need assistance with the MCP directory API, please join our Discord server