"""
Layers 2-3: ZX-Calculus Core Implementation
Layer 2 (Structure): Deterministic circuit analysis and optimization selection
Layer 3 (Relational): Circuit composition rules, rewrite sequence planning
Provides deterministic mapping from quantum circuits to ZX-diagrams with
simplification strategies. Zero LLM cost for these layers.
"""
from typing import Dict, List, Tuple, Optional, Set
from dataclasses import dataclass
from enum import Enum
import re
from collections import defaultdict
from quantum_zx_ologs import (
QUANTUM_GATE_TAXONOMY,
SPIDER_FUSION_RULES,
lookup_gate,
SpiderType,
QuantumGate
)
class CircuitFormat(Enum):
"""Supported quantum circuit formats."""
QASM = "qasm"
QISKIT = "qiskit"
QUIPPER = "quipper"
ZX_DIAGRAM = "zx_diagram"
class OptimizationStrategy(Enum):
"""Strategies for circuit simplification."""
CLIFFORD_SIMPLIFICATION = "clifford"
T_COUNT_REDUCTION = "t_count"
MEASUREMENT_BASED = "mbqc"
ERROR_CORRECTION = "error_correction"
FULL_REDUCTION = "full"
EDUCATIONAL = "educational"
@dataclass
class QuantumCircuit:
"""Parsed quantum circuit."""
num_qubits: int
gates: List[Tuple[str, List[int]]] # (gate_name, [qubit_indices])
classical_bits: int = 0
measurements: List[Tuple[int, int]] = None # (qubit, classical_bit)
def __post_init__(self):
if self.measurements is None:
self.measurements = []
@dataclass
class ZXDiagram:
"""ZX-diagram representation of a quantum circuit."""
spiders: List[Dict] # List of spider definitions
wires: List[Tuple[int, int]] # Connections between spiders
phases: Dict[int, float] # Phase values for each spider
bounding_box: Optional[Tuple[int, int]] = None
def to_dict(self) -> Dict:
"""Convert to dictionary for JSON serialization."""
return {
"spiders": self.spiders,
"wires": self.wires,
"phases": self.phases,
"bounding_box": self.bounding_box
}
@dataclass
class CircuitAnalysis:
"""Analysis of circuit properties and optimization potential."""
total_gates: int
clifford_gates: int
t_gates: int
two_qubit_gates: int
measurements: int
entanglement_score: float # 0-1 estimate of entanglement
clifford_depth: int
estimated_t_count: int
has_measurements: bool
is_clifford_only: bool
recommended_strategies: List[OptimizationStrategy]
potential_optimizations: Dict[str, str]
# ============================================================================
# LAYER 2: CIRCUIT PARSING (Deterministic)
# ============================================================================
def parse_qasm_circuit(qasm_code: str) -> Optional[QuantumCircuit]:
"""
Parse OpenQASM 2.0 circuit (deterministic, 0 tokens).
Extracts gate sequence and qubit mapping.
"""
lines = qasm_code.strip().split('\n')
num_qubits = 0
gates = []
for line in lines:
line = line.strip()
# Extract qubit count
if line.startswith('qreg'):
match = re.search(r'qreg\s+\w+\[(\d+)\]', line)
if match:
num_qubits = max(num_qubits, int(match.group(1)))
# Parse gate operations
elif line and not line.startswith('//') and not line.startswith('OPENQASM'):
# Handle parametric gates
if '(' in line:
match = re.match(r'(\w+)\([^)]*\)\s+(q\[\d+\](?:,\s*q\[\d+\])*)', line)
else:
match = re.match(r'(\w+)\s+(q\[\d+\](?:,\s*q\[\d+\])*)', line)
if match:
gate_name = match.group(1)
qubits_str = match.group(2)
# Extract qubit indices
qubit_indices = [int(m) for m in re.findall(r'\[(\d+)\]', qubits_str)]
gates.append((gate_name.lower(), qubit_indices))
if num_qubits == 0 and gates:
num_qubits = max(max(q for _, qs in gates for q in qs), 0) + 1
return QuantumCircuit(num_qubits=num_qubits, gates=gates) if gates else None
# ============================================================================
# LAYER 2: CIRCUIT ANALYSIS (Deterministic)
# ============================================================================
def analyze_circuit(circuit: QuantumCircuit) -> CircuitAnalysis:
"""
Analyze circuit properties and determine optimization strategy
(deterministic, 0 tokens).
"""
clifford_gates = 0
t_gates = 0
two_qubit_gates = 0
measurements = 0
entangling_ops = 0
for gate_name, qubits in circuit.gates:
gate_def = lookup_gate(gate_name)
if not gate_def:
continue
if gate_def.is_clifford:
clifford_gates += 1
if not gate_def.is_clifford and gate_def.is_clifford_t:
t_gates += 1
if len(qubits) >= 2:
two_qubit_gates += 1
entangling_ops += 1
if gate_name in ['measure_z', 'measure_x']:
measurements += 1
total_gates = len(circuit.gates)
is_clifford_only = t_gates == 0
# Estimate entanglement (simple heuristic)
entanglement_score = min(1.0, entangling_ops / max(1, total_gates))
# Estimate clifford depth (simplified)
clifford_depth = total_gates - t_gates
# Estimate T-count (critical for fault tolerance)
estimated_t_count = t_gates * 4 # Rough estimate
# Recommend optimization strategies
recommended_strategies = []
if is_clifford_only:
recommended_strategies.append(OptimizationStrategy.CLIFFORD_SIMPLIFICATION)
if t_gates > 0:
recommended_strategies.append(OptimizationStrategy.T_COUNT_REDUCTION)
if measurements > 0:
recommended_strategies.append(OptimizationStrategy.MEASUREMENT_BASED)
if entanglement_score > 0.5:
recommended_strategies.append(OptimizationStrategy.ERROR_CORRECTION)
recommended_strategies.append(OptimizationStrategy.EDUCATIONAL)
# Potential optimizations
potential_optimizations = {}
if clifford_gates > 3:
potential_optimizations["clifford_simplification"] = "Multiple Clifford gates detected - can be simplified"
if t_gates > 2:
potential_optimizations["t_count_reduction"] = f"Circuit has {t_gates} T gates - T-count reduction applicable"
if two_qubit_gates > 3:
potential_optimizations["entanglement_routing"] = "Multiple entangling gates - routing optimization possible"
return CircuitAnalysis(
total_gates=total_gates,
clifford_gates=clifford_gates,
t_gates=t_gates,
two_qubit_gates=two_qubit_gates,
measurements=measurements,
entanglement_score=entanglement_score,
clifford_depth=clifford_depth,
estimated_t_count=estimated_t_count,
has_measurements=measurements > 0,
is_clifford_only=is_clifford_only,
recommended_strategies=recommended_strategies,
potential_optimizations=potential_optimizations
)
# ============================================================================
# LAYER 2: ZX-DIAGRAM CONVERSION (Deterministic)
# ============================================================================
def circuit_to_zx_diagram(circuit: QuantumCircuit) -> ZXDiagram:
"""
Convert quantum circuit to ZX-diagram representation
(deterministic, 0 tokens).
Maps gates to spiders and builds wire connectivity.
"""
spiders = []
wires = []
phases = {}
spider_id = 0
qubit_to_spider: Dict[int, int] = {}
# Create initial state spiders (one per qubit)
for qubit in range(circuit.num_qubits):
spiders.append({
"id": spider_id,
"type": "Z",
"inputs": 0,
"outputs": 1,
"label": f"q{qubit}_init"
})
phases[spider_id] = 0.0
qubit_to_spider[qubit] = spider_id
spider_id += 1
# Process gates
for gate_name, qubits in circuit.gates:
gate_def = lookup_gate(gate_name)
if not gate_def:
continue
spider_type = gate_def.primary_spider.value
phase = gate_def.phase
if len(qubits) == 1:
# Single-qubit gate
input_spider = qubit_to_spider[qubits[0]]
spiders.append({
"id": spider_id,
"type": spider_type,
"inputs": 1,
"outputs": 1,
"label": gate_name
})
phases[spider_id] = phase
wires.append((input_spider, spider_id))
qubit_to_spider[qubits[0]] = spider_id
spider_id += 1
elif len(qubits) == 2:
# Two-qubit gate (CNOT, CZ, SWAP)
input1 = qubit_to_spider[qubits[0]]
input2 = qubit_to_spider[qubits[1]]
# Create gate spider
spiders.append({
"id": spider_id,
"type": spider_type,
"inputs": 2,
"outputs": 2,
"label": gate_name
})
phases[spider_id] = phase
wires.append((input1, spider_id))
wires.append((input2, spider_id))
current_spider = spider_id
spider_id += 1
# Update qubit mappings
qubit_to_spider[qubits[0]] = current_spider
qubit_to_spider[qubits[1]] = current_spider
return ZXDiagram(
spiders=spiders,
wires=wires,
phases=phases,
bounding_box=(circuit.num_qubits, len(circuit.gates))
)
# ============================================================================
# LAYER 2: REWRITE STRATEGY SELECTION (Deterministic)
# ============================================================================
def select_simplification_strategy(analysis: CircuitAnalysis,
desired_outcome: str = "balanced") -> Dict:
"""
Select ZX-calculus rewrite strategy based on circuit analysis
(deterministic, 0 tokens).
"""
strategy = {
"primary_goal": desired_outcome,
"rewrite_rules": [],
"expected_gate_reduction": 0.0,
"expected_t_reduction": 0,
"implementation_notes": []
}
if desired_outcome == "clifford_simplification":
strategy["rewrite_rules"] = [
"spider_fusion",
"phase_cancellation",
"hadamard_removal"
]
strategy["expected_gate_reduction"] = min(0.3, analysis.clifford_gates / max(1, analysis.total_gates))
strategy["implementation_notes"] = [
"Apply fusion rules to connected spiders of same type",
"Cancel phases that sum to 2π",
"Remove Hadamard pairs"
]
elif desired_outcome == "t_count_reduction":
strategy["rewrite_rules"] = [
"phase_teleportation",
"color_change",
"local_complementation"
]
strategy["expected_t_reduction"] = int(analysis.estimated_t_count * 0.3)
strategy["implementation_notes"] = [
"Identify T gates (π/4 phases)",
"Apply phase teleportation to reduce T-count",
"Use color change to reposition expensive operations"
]
elif desired_outcome == "measurement_based":
strategy["rewrite_rules"] = [
"measurement_spider",
"byproduct_correction",
"flow_verification"
]
strategy["implementation_notes"] = [
"Represent measurements as X-spiders with parameters",
"Verify flow structure for measurement-based computation",
"Compute byproduct corrections"
]
elif desired_outcome == "educational":
strategy["rewrite_rules"] = [
"step_by_step_fusion",
"visualization_friendly",
"explanation_generation"
]
strategy["expected_gate_reduction"] = 0.2
strategy["implementation_notes"] = [
"Generate step-by-step transformations",
"Create SVG visualizations at each step",
"Generate natural language explanations"
]
return strategy
# ============================================================================
# LAYER 2-3: CIRCUIT STATISTICS
# ============================================================================
def get_circuit_statistics(circuit: QuantumCircuit) -> Dict:
"""Get comprehensive circuit statistics (deterministic)."""
analysis = analyze_circuit(circuit)
return {
"basic_info": {
"num_qubits": circuit.num_qubits,
"num_gates": analysis.total_gates,
"num_classical_bits": circuit.classical_bits,
"num_measurements": analysis.measurements
},
"gate_composition": {
"clifford_gates": analysis.clifford_gates,
"t_gates": analysis.t_gates,
"two_qubit_gates": analysis.two_qubit_gates,
"single_qubit_gates": analysis.total_gates - analysis.two_qubit_gates
},
"complexity_metrics": {
"clifford_depth": analysis.clifford_depth,
"estimated_t_count": analysis.estimated_t_count,
"entanglement_score": round(analysis.entanglement_score, 3),
"is_clifford_only": analysis.is_clifford_only
},
"optimization_potential": {
"recommended_strategies": [s.value for s in analysis.recommended_strategies],
"potential_optimizations": analysis.potential_optimizations
}
}