Skip to main content
Glama

MCP AI Service Platform

by dkb12138ggg
logging.py1.62 kB
"""生产级日志配置""" import sys import logging from typing import Any, Dict import structlog from structlog import get_logger from src.config.settings import settings def setup_logging() -> None: """设置结构化日志""" # 配置标准库日志 logging.basicConfig( format="%(message)s", stream=sys.stdout, level=getattr(logging, settings.logging.level.upper()) ) # 配置structlog processors = [ structlog.contextvars.merge_contextvars, structlog.processors.add_log_level, structlog.processors.TimeStamper(fmt="ISO"), structlog.processors.CallsiteParameterAdder( { structlog.processors.CallsiteParameter.FILENAME, structlog.processors.CallsiteParameter.FUNC_NAME, structlog.processors.CallsiteParameter.LINENO, } ), ] if settings.logging.format == "json": processors.append(structlog.processors.JSONRenderer()) else: processors.extend([ structlog.dev.ConsoleRenderer(colors=True), ]) structlog.configure( processors=processors, wrapper_class=structlog.make_filtering_bound_logger( getattr(logging, settings.logging.level.upper()) ), logger_factory=structlog.stdlib.LoggerFactory(), cache_logger_on_first_use=True, ) def get_structured_logger(name: str = None) -> structlog.BoundLogger: """获取结构化日志记录器""" return get_logger(name) # 通用日志记录器 logger = get_structured_logger(__name__)

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dkb12138ggg/python-rag-mcp-client'

If you have feedback or need assistance with the MCP directory API, please join our Discord server