Skip to main content
Glama

MCP AI Service Platform

by dkb12138ggg
Dockerfile1.26 kB
# 多阶段构建 FROM python:3.11-slim as builder # 设置工作目录 WORKDIR /app # 安装系统依赖 RUN apt-get update && apt-get install -y \ build-essential \ curl \ && rm -rf /var/lib/apt/lists/* # 安装uv RUN pip install uv # 复制依赖文件 COPY pyproject.toml uv.lock ./ # 创建虚拟环境并安装依赖 RUN uv venv /opt/venv ENV PATH="/opt/venv/bin:$PATH" RUN uv pip install -r pyproject.toml # 生产阶段 FROM python:3.11-slim as production # 创建非root用户 RUN groupadd -r mcpuser && useradd -r -g mcpuser mcpuser # 安装运行时依赖 RUN apt-get update && apt-get install -y \ curl \ && rm -rf /var/lib/apt/lists/* # 设置工作目录 WORKDIR /app # 从构建阶段复制虚拟环境 COPY --from=builder /opt/venv /opt/venv ENV PATH="/opt/venv/bin:$PATH" # 复制应用代码 COPY src/ ./src/ COPY mcp.json ./ COPY client.py server.py main.py ./ # 创建日志目录 RUN mkdir -p /app/logs && chown -R mcpuser:mcpuser /app # 切换到非root用户 USER mcpuser # 暴露端口 EXPOSE 8000 8001 # 健康检查 HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 \ CMD curl -f http://localhost:8000/health || exit 1 # 启动命令 CMD ["python", "-m", "src.api.main"]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/dkb12138ggg/python-rag-mcp-client'

If you have feedback or need assistance with the MCP directory API, please join our Discord server