Skip to main content
Glama
digital-duck

Model Context Protocol Demo

by digital-duck
extra_func.py52 kB
# Enhanced MCP Client with Dynamic Tool Registration and Batch Operations # Add these classes and modifications to your existing code import json import yaml from typing import Dict, List, Any, Optional, Union from dataclasses import dataclass, asdict from pathlib import Path import asyncio import concurrent.futures from datetime import datetime import logging # ============================================================================ # 1. DYNAMIC TOOL REGISTRATION SYSTEM # ============================================================================ @dataclass class ToolParameter: """Define a tool parameter with validation""" name: str type: str # "string", "number", "boolean", "array", "object" description: str required: bool = True default: Any = None enum: Optional[List[Any]] = None min_value: Optional[float] = None max_value: Optional[float] = None @dataclass class CustomToolDefinition: """Complete tool definition for registration""" name: str description: str category: str parameters: List[ToolParameter] endpoint: str # URL or local function reference method: str = "POST" # HTTP method or "FUNCTION" for local functions examples: List[str] = None tags: List[str] = None author: str = None version: str = "1.0.0" created_at: datetime = None def __post_init__(self): if self.created_at is None: self.created_at = datetime.now() if self.examples is None: self.examples = [] if self.tags is None: self.tags = [] class DynamicToolRegistry: """Registry for managing custom tools""" def __init__(self, registry_file: str = "custom_tools.json"): self.registry_file = registry_file self.tools: Dict[str, CustomToolDefinition] = {} self.local_functions: Dict[str, callable] = {} self.load_registry() def register_tool(self, tool_def: CustomToolDefinition) -> bool: """Register a new tool""" try: # Validate tool definition if not self._validate_tool_definition(tool_def): return False # Store tool self.tools[tool_def.name] = tool_def # Save to file self.save_registry() logging.info(f"✅ Registered tool: {tool_def.name}") return True except Exception as e: logging.error(f"❌ Failed to register tool {tool_def.name}: {e}") return False def register_local_function(self, tool_name: str, function: callable): """Register a local Python function as a tool""" self.local_functions[tool_name] = function logging.info(f"✅ Registered local function: {tool_name}") def unregister_tool(self, tool_name: str) -> bool: """Remove a tool from registry""" if tool_name in self.tools: del self.tools[tool_name] if tool_name in self.local_functions: del self.local_functions[tool_name] self.save_registry() logging.info(f"🗑️ Unregistered tool: {tool_name}") return True return False def get_tool(self, tool_name: str) -> Optional[CustomToolDefinition]: """Get tool definition by name""" return self.tools.get(tool_name) def list_tools(self) -> List[CustomToolDefinition]: """Get all registered tools""" return list(self.tools.values()) def get_tools_by_category(self, category: str) -> List[CustomToolDefinition]: """Get tools filtered by category""" return [tool for tool in self.tools.values() if tool.category == category] def search_tools(self, query: str) -> List[CustomToolDefinition]: """Search tools by name, description, or tags""" query_lower = query.lower() results = [] for tool in self.tools.values(): if (query_lower in tool.name.lower() or query_lower in tool.description.lower() or any(query_lower in tag.lower() for tag in tool.tags)): results.append(tool) return results def _validate_tool_definition(self, tool_def: CustomToolDefinition) -> bool: """Validate tool definition""" if not tool_def.name or not tool_def.description: logging.error("Tool name and description are required") return False if tool_def.name in self.tools: logging.warning(f"Tool {tool_def.name} already exists, will overwrite") # Validate parameters for param in tool_def.parameters: if param.type not in ["string", "number", "boolean", "array", "object"]: logging.error(f"Invalid parameter type: {param.type}") return False return True def save_registry(self): """Save registry to file""" try: registry_data = { name: { **asdict(tool_def), 'created_at': tool_def.created_at.isoformat() } for name, tool_def in self.tools.items() } with open(self.registry_file, 'w') as f: json.dump(registry_data, f, indent=2) except Exception as e: logging.error(f"Failed to save registry: {e}") def load_registry(self): """Load registry from file""" try: if Path(self.registry_file).exists(): with open(self.registry_file, 'r') as f: registry_data = json.load(f) for name, tool_data in registry_data.items(): # Convert back to proper objects tool_data['created_at'] = datetime.fromisoformat(tool_data['created_at']) tool_data['parameters'] = [ ToolParameter(**param) for param in tool_data['parameters'] ] self.tools[name] = CustomToolDefinition(**tool_data) logging.info(f"✅ Loaded {len(self.tools)} custom tools from registry") except Exception as e: logging.error(f"Failed to load registry: {e}") self.tools = {} # ============================================================================ # 2. BATCH OPERATIONS SYSTEM # ============================================================================ @dataclass class BatchOperation: """Single operation in a batch""" id: str tool: str params: Dict[str, Any] depends_on: Optional[List[str]] = None # List of operation IDs this depends on variable_name: Optional[str] = None # Store result in variable for reference @dataclass class BatchRequest: """Complete batch request""" operations: List[BatchOperation] parallel: bool = False # Execute operations in parallel where possible fail_fast: bool = True # Stop on first error timeout: int = 300 # Total timeout in seconds @dataclass class BatchResult: """Result of batch execution""" operation_id: str tool: str success: bool result: Any = None error: str = None execution_time_ms: int = 0 dependencies_resolved: List[str] = None class BatchProcessor: """Process batch operations with dependency resolution""" def __init__(self, mcp_client_func, custom_registry: DynamicToolRegistry): self.mcp_client_func = mcp_client_func self.custom_registry = custom_registry self.variables = {} # Store results for variable references async def execute_batch(self, batch_request: BatchRequest) -> List[BatchResult]: """Execute a batch of operations""" results = [] completed_ops = set() try: if batch_request.parallel: results = await self._execute_parallel(batch_request, completed_ops) else: results = await self._execute_sequential(batch_request, completed_ops) except Exception as e: logging.error(f"Batch execution failed: {e}") # Return partial results with error results.append(BatchResult( operation_id="batch_error", tool="batch", success=False, error=str(e) )) return results async def _execute_sequential(self, batch_request: BatchRequest, completed_ops: set) -> List[BatchResult]: """Execute operations sequentially with dependency resolution""" results = [] operations = batch_request.operations.copy() while operations and len(completed_ops) < len(batch_request.operations): # Find operations that can be executed (dependencies met) ready_ops = [ op for op in operations if not op.depends_on or all(dep in completed_ops for dep in op.depends_on) ] if not ready_ops: # Circular dependency or missing dependency remaining_ops = [op.id for op in operations] error_result = BatchResult( operation_id="dependency_error", tool="batch", success=False, error=f"Circular or missing dependencies for operations: {remaining_ops}" ) results.append(error_result) break # Execute first ready operation operation = ready_ops[0] result = await self._execute_single_operation(operation, batch_request.fail_fast) results.append(result) if result.success: completed_ops.add(operation.id) # Store result in variables if specified if operation.variable_name: self.variables[operation.variable_name] = result.result elif batch_request.fail_fast: break operations.remove(operation) return results async def _execute_parallel(self, batch_request: BatchRequest, completed_ops: set) -> List[BatchResult]: """Execute operations in parallel where dependencies allow""" results = [] operations = batch_request.operations.copy() while operations and len(completed_ops) < len(batch_request.operations): # Find all operations that can be executed in parallel ready_ops = [ op for op in operations if not op.depends_on or all(dep in completed_ops for dep in op.depends_on) ] if not ready_ops: break # Execute ready operations in parallel tasks = [ self._execute_single_operation(op, batch_request.fail_fast) for op in ready_ops ] batch_results = await asyncio.gather(*tasks, return_exceptions=True) for i, result in enumerate(batch_results): if isinstance(result, Exception): result = BatchResult( operation_id=ready_ops[i].id, tool=ready_ops[i].tool, success=False, error=str(result) ) results.append(result) if result.success: completed_ops.add(ready_ops[i].id) if ready_ops[i].variable_name: self.variables[ready_ops[i].variable_name] = result.result elif batch_request.fail_fast: return results # Remove completed operations for op in ready_ops: operations.remove(op) return results async def _execute_single_operation(self, operation: BatchOperation, fail_fast: bool) -> BatchResult: """Execute a single operation""" start_time = time.time() try: # Resolve variable references in parameters resolved_params = self._resolve_parameters(operation.params) # Check if it's a custom tool custom_tool = self.custom_registry.get_tool(operation.tool) if custom_tool: result = await self._execute_custom_tool(custom_tool, resolved_params) else: # Execute via standard MCP result = await self._execute_mcp_tool(operation.tool, resolved_params) execution_time = int((time.time() - start_time) * 1000) return BatchResult( operation_id=operation.id, tool=operation.tool, success=True, result=result, execution_time_ms=execution_time, dependencies_resolved=operation.depends_on or [] ) except Exception as e: execution_time = int((time.time() - start_time) * 1000) return BatchResult( operation_id=operation.id, tool=operation.tool, success=False, error=str(e), execution_time_ms=execution_time, dependencies_resolved=operation.depends_on or [] ) def _resolve_parameters(self, params: Dict[str, Any]) -> Dict[str, Any]: """Resolve variable references in parameters""" resolved = {} for key, value in params.items(): if isinstance(value, str) and value.startswith("${") and value.endswith("}"): # Variable reference var_name = value[2:-1] if var_name in self.variables: resolved[key] = self.variables[var_name] else: raise ValueError(f"Variable '{var_name}' not found") else: resolved[key] = value return resolved async def _execute_custom_tool(self, tool_def: CustomToolDefinition, params: Dict[str, Any]) -> Any: """Execute a custom tool""" if tool_def.method == "FUNCTION": # Local function execution if tool_def.name in self.custom_registry.local_functions: func = self.custom_registry.local_functions[tool_def.name] if asyncio.iscoroutinefunction(func): return await func(**params) else: return func(**params) else: raise ValueError(f"Local function not found: {tool_def.name}") else: # HTTP endpoint execution import aiohttp async with aiohttp.ClientSession() as session: async with session.request( tool_def.method, tool_def.endpoint, json=params ) as response: if response.status == 200: return await response.json() else: raise ValueError(f"HTTP {response.status}: {await response.text()}") async def _execute_mcp_tool(self, tool_name: str, params: Dict[str, Any]) -> Any: """Execute a standard MCP tool""" return await self.mcp_client_func(tool_name, params) # ============================================================================ # 3. ENHANCED QUERY PARSER FOR BATCH OPERATIONS # ============================================================================ class EnhancedQueryParser: """Enhanced parser that can handle batch operations and custom tools""" def __init__(self, registry: DynamicToolRegistry, llm_parser: 'LLMQueryParser'): self.registry = registry self.llm_parser = llm_parser def parse_batch_query(self, query: str) -> Optional[BatchRequest]: """Parse queries that request batch operations""" query_lower = query.lower() # Detect batch operation patterns batch_indicators = [ "and then", "then", "after that", "followed by", "also calculate", "also find", "batch", "multiple", "calculate all", "find all" ] if not any(indicator in query_lower for indicator in batch_indicators): return None try: # Enhanced prompt for batch parsing system_prompt = f""" You are a batch operation parser. Parse the user query into multiple operations. Return a JSON object with this structure: {{ "is_batch": true, "parallel": false, "operations": [ {{ "id": "op1", "tool": "calculator", "params": {{"operation": "add", "num1": 15, "num2": 27}}, "variable_name": "sum_result" }}, {{ "id": "op2", "tool": "trig", "params": {{"operation": "sine", "num1": "${{sum_result}}", "unit": "degree"}}, "depends_on": ["op1"] }} ] }} Available standard tools: calculator, trig, health, echo Available custom tools: {[tool.name for tool in self.registry.list_tools()]} Rules: - Each operation needs a unique id - Use variable_name to store results for later reference - Use ${{variable_name}} to reference previous results - Use depends_on to specify operation dependencies - Set parallel=true only if operations can run simultaneously """ parsed_response = ask_llm( self.llm_parser.provider, self.llm_parser.client, self.llm_parser.model_name, query, system_prompt, max_tokens=800 ) if parsed_response and parsed_response.get("is_batch"): operations = [ BatchOperation(**op_data) for op_data in parsed_response["operations"] ] return BatchRequest( operations=operations, parallel=parsed_response.get("parallel", False) ) except Exception as e: logging.error(f"Batch parsing error: {e}") return None # ============================================================================ # 4. ENHANCED RAG SYSTEM FOR CUSTOM TOOLS # ============================================================================ class EnhancedMCPRAGSystem(MCPRAGSystem): """Enhanced RAG system that includes custom tools""" def __init__(self, custom_registry: DynamicToolRegistry): super().__init__() self.custom_registry = custom_registry def build_embeddings(self, tools: List[Dict], resources: List[Dict]): """Build embeddings including custom tools""" # Add custom tools to the standard tools custom_tools = [] for tool_def in self.custom_registry.list_tools(): custom_tools.append({ 'name': tool_def.name, 'description': tool_def.description, 'category': tool_def.category, 'tags': tool_def.tags, 'examples': tool_def.examples }) # Combine standard and custom tools all_tools = tools + custom_tools # Call parent method with enhanced tool list super().build_embeddings(all_tools, resources) def build_rich_context(self, item: Dict, item_type: str) -> str: """Enhanced context building for custom tools""" if item_type == "tool" and 'category' in item: # This is a custom tool name = item.get('name', '') desc = item.get('description', '') category = item.get('category', '') tags = item.get('tags', []) examples = item.get('examples', []) context = f""" Tool: {name} Description: {desc} Category: {category} Type: custom tool Usage examples: {' | '.join(examples) if examples else 'No examples provided'} Keywords: {name}, {category}, {', '.join(tags)} Tags: {', '.join(tags)} """.strip() return context else: # Use parent method for standard tools/resources return super().build_rich_context(item, item_type) # ============================================================================ # 5. EXAMPLE USAGE AND SAMPLE TOOLS # ============================================================================ def create_sample_custom_tools(registry: DynamicToolRegistry): """Create some sample custom tools for demonstration""" # 1. Unit Converter Tool unit_converter = CustomToolDefinition( name="unit_converter", description="Convert between different units of measurement", category="conversion", parameters=[ ToolParameter("value", "number", "Value to convert", required=True), ToolParameter("from_unit", "string", "Source unit", required=True, enum=["m", "ft", "in", "cm", "mm", "km", "miles"]), ToolParameter("to_unit", "string", "Target unit", required=True, enum=["m", "ft", "in", "cm", "mm", "km", "miles"]), ], endpoint="FUNCTION", # Local function examples=[ "convert 5 feet to meters", "convert 100 km to miles", "convert 12 inches to cm" ], tags=["conversion", "units", "measurement"], author="System" ) # Local function for unit converter def unit_converter_func(value: float, from_unit: str, to_unit: str) -> Dict[str, Any]: # Simple conversion factors to meters to_meters = { "m": 1, "ft": 0.3048, "in": 0.0254, "cm": 0.01, "mm": 0.001, "km": 1000, "miles": 1609.34 } # Convert to meters first, then to target unit meters = value * to_meters[from_unit] result = meters / to_meters[to_unit] return { "original_value": value, "original_unit": from_unit, "converted_value": round(result, 6), "converted_unit": to_unit, "expression": f"{value} {from_unit} = {round(result, 6)} {to_unit}" } registry.register_tool(unit_converter) registry.register_local_function("unit_converter", unit_converter_func) # 2. Text Analysis Tool text_analyzer = CustomToolDefinition( name="text_analyzer", description="Analyze text for word count, character count, and basic statistics", category="text", parameters=[ ToolParameter("text", "string", "Text to analyze", required=True), ToolParameter("include_spaces", "boolean", "Include spaces in character count", default=True), ], endpoint="FUNCTION", examples=[ "analyze this text: Hello world", "count words in: The quick brown fox", "text stats for: Lorem ipsum dolor sit amet" ], tags=["text", "analysis", "statistics", "nlp"], author="System" ) def text_analyzer_func(text: str, include_spaces: bool = True) -> Dict[str, Any]: words = text.split() chars = len(text) if include_spaces else len(text.replace(" ", "")) sentences = text.count('.') + text.count('!') + text.count('?') return { "text": text, "word_count": len(words), "character_count": chars, "sentence_count": max(1, sentences), "average_word_length": round(sum(len(word) for word in words) / len(words), 2) if words else 0, "includes_spaces": include_spaces } registry.register_tool(text_analyzer) registry.register_local_function("text_analyzer", text_analyzer_func) logging.info("✅ Created sample custom tools: unit_converter, text_analyzer") # ============================================================================ # 6. STREAMLIT UI COMPONENTS FOR TOOL MANAGEMENT # ============================================================================ def render_tool_management_ui(registry: DynamicToolRegistry): """Render UI for managing custom tools""" st.subheader("🔧 Tool Management") # Tabs for different tool operations tab1, tab2, tab3 = st.tabs(["📋 View Tools", "➕ Add Tool", "🗑️ Remove Tool"]) with tab1: # List existing tools custom_tools = registry.list_tools() if custom_tools: st.write(f"**{len(custom_tools)} Custom Tools Registered:**") for tool in custom_tools: with st.expander(f"🔧 {tool.name} ({tool.category})"): st.write(f"**Description:** {tool.description}") st.write(f"**Author:** {tool.author or 'Unknown'}") st.write(f"**Version:** {tool.version}") st.write(f"**Created:** {tool.created_at.strftime('%Y-%m-%d %H:%M')}") if tool.tags: st.write(f"**Tags:** {', '.join(tool.tags)}") if tool.examples: st.write("**Examples:**") for example in tool.examples: st.write(f" • {example}") st.write("**Parameters:**") for param in tool.parameters: required_text = "✅ Required" if param.required else "⭕ Optional" st.write(f" • `{param.name}` ({param.type}): {param.description} - {required_text}") else: st.info("No custom tools registered yet.") with tab2: # Add new tool form st.write("**Create a New Custom Tool**") with st.form("add_tool_form"): name = st.text_input("Tool Name", help="Unique identifier for the tool") description = st.text_area("Description", help="What does this tool do?") category = st.selectbox("Category", ["calculation", "conversion", "text", "data", "utility", "other"]) author = st.text_input("Author", value="User") # Parameters section st.write("**Parameters:**") param_count = st.number_input("Number of Parameters", min_value=0, max_value=10, value=1) parameters = [] for i in range(int(param_count)): st.write(f"Parameter {i+1}:") col1, col2, col3 = st.columns([2, 1, 1]) with col1: param_name = st.text_input(f"Name {i+1}", key=f"param_name_{i}") param_desc = st.text_input(f"Description {i+1}", key=f"param_desc_{i}") with col2: param_type = st.selectbox(f"Type {i+1}", ["string", "number", "boolean"], key=f"param_type_{i}") with col3: param_required = st.checkbox(f"Required {i+1}", value=True, key=f"param_req_{i}") if param_name and param_desc: parameters.append(ToolParameter( name=param_name, type=param_type, description=param_desc, required=param_required )) # Examples and tags examples_text = st.text_area("Examples (one per line)", help="Provide example queries that would use this tool") tags_text = st.text_input("Tags (comma-separated)", help="Keywords to help find this tool") endpoint = st.text_input("Endpoint", value="FUNCTION", help="Use 'FUNCTION' for local Python functions, or provide HTTP URL") submitted = st.form_submit_button("Register Tool") if submitted and name and description: examples = [ex.strip() for ex in examples_text.split('\n') if ex.strip()] tags = [tag.strip() for tag in tags_text.split(',') if tag.strip()] tool_def = CustomToolDefinition( name=name, description=description, category=category, parameters=parameters, endpoint=endpoint, examples=examples, tags=tags, author=author ) if registry.register_tool(tool_def): st.success(f"✅ Tool '{name}' registered successfully!") st.rerun() else: st.error("❌ Failed to register tool. Check the logs for details.") with tab3: # Remove tools custom_tools = registry.list_tools() if custom_tools: tool_names = [tool.name for tool in custom_tools] selected_tool = st.selectbox("Select tool to remove:", tool_names) if st.button("🗑️ Remove Tool", type="secondary"): if registry.unregister_tool(selected_tool): st.success(f"✅ Tool '{selected_tool}' removed successfully!") st.rerun() else: st.error("❌ Failed to remove tool.") else: st.info("No custom tools to remove.") def render_batch_operations_ui(): """Render UI for batch operations""" st.subheader("🔄 Batch Operations") with st.expander("ℹ️ Batch Operations Help"): st.markdown(""" **Batch operations** allow you to chain multiple tool calls together: **Example queries:** - "Calculate 15 + 27, then find the sine of that result" - "Convert 5 feet to meters, then multiply by 2" - "Analyze this text: 'Hello world', then echo the word count" **Features:** - **Sequential execution** with dependency resolution - **Variable references** using ${variable_name} - **Parallel execution** when operations are independent - **Error handling** with fail-fast or continue options """) # Batch operation examples st.write("**Try these batch operation examples:**") col1, col2 = st.columns(2) with col1: if st.button("📊 Math Chain Example"): st.session_state.example_query = "Calculate 15 plus 27, then find sine of that result in degrees" with col2: if st.button("🔄 Conversion Chain Example"): st.session_state.example_query = "Convert 5 feet to meters, then multiply that by 3.14" # Example integration into your main Streamlit app: def enhanced_main(): """Enhanced main function with dynamic tools and batch operations""" # Initialize enhanced systems if 'custom_registry' not in st.session_state: st.session_state.custom_registry = DynamicToolRegistry() # Create sample tools on first run create_sample_custom_tools(st.session_state.custom_registry) if 'batch_processor' not in st.session_state: # You'll need to adapt this to your MCP client function async def mcp_client_func(tool_name, params): async with Client(MCP_SERVER_PATH) as client: result = await client.call_tool(tool_name, params) return extract_result_data(result) st.session_state.batch_processor = BatchProcessor( mcp_client_func=mcp_client_func, custom_registry=st.session_state.custom_registry ) if 'enhanced_parser' not in st.session_state: # Initialize with your existing LLM parser llm_parser = LLMQueryParser(st.session_state.llm_provider) st.session_state.enhanced_parser = EnhancedQueryParser( registry=st.session_state.custom_registry, llm_parser=llm_parser ) # Enhanced RAG system if 'enhanced_rag_system' not in st.session_state: st.session_state.enhanced_rag_system = EnhancedMCPRAGSystem( custom_registry=st.session_state.custom_registry ) # ============================================================================ # 7. INTEGRATION WITH EXISTING QUERY PROCESSING # ============================================================================ async def enhanced_execute_query(user_query: str) -> Tuple[List[Dict], int, bool]: """Enhanced query execution with batch and custom tool support""" start_time = time.time() try: # First, check if it's a batch operation batch_request = st.session_state.enhanced_parser.parse_batch_query(user_query) if batch_request: # Execute batch operations batch_results = await st.session_state.batch_processor.execute_batch(batch_request) # Convert batch results to standard format results = [] is_batch = True for batch_result in batch_results: if batch_result.success: results.append({ "type": "tool", "name": batch_result.tool, "data": batch_result.result, "success": True, "operation_id": batch_result.operation_id, "execution_time_ms": batch_result.execution_time_ms, "dependencies": batch_result.dependencies_resolved }) else: results.append({ "type": "error", "message": f"Operation {batch_result.operation_id} failed: {batch_result.error}", "success": False, "operation_id": batch_result.operation_id }) elapsed_time = int((time.time() - start_time) * 1000) return results, elapsed_time, is_batch else: # Single operation - use existing logic but check for custom tools first parsed_query = None # Try RAG-enhanced parsing with custom tools if st.session_state.use_llm and st.session_state.use_rag and RAG_AVAILABLE: # Rebuild embeddings to include custom tools tools, resources = get_mcp_server_info() st.session_state.enhanced_rag_system.build_embeddings(tools, resources) # Use enhanced RAG system parser = LLMQueryParser(st.session_state.llm_provider) if parser.client: parsed_query = parser.parse_query_with_rag(user_query, st.session_state.enhanced_rag_system) # Fallback to standard parsing if not parsed_query: if st.session_state.use_llm: parser = LLMQueryParser(st.session_state.llm_provider) if parser.client: parsed_query = parser.parse_query_sync(user_query) else: parsed_query = RuleBasedQueryParser.parse_query(user_query) else: parsed_query = RuleBasedQueryParser.parse_query(user_query) if not parsed_query: elapsed_time = int((time.time() - start_time) * 1000) return [], elapsed_time, False # Execute single operation results = [] tool_name = parsed_query.get("tool") parameters = parsed_query.get("params", {}) if tool_name: # Check if it's a custom tool custom_tool = st.session_state.custom_registry.get_tool(tool_name) if custom_tool: # Execute custom tool try: if custom_tool.method == "FUNCTION": func = st.session_state.custom_registry.local_functions.get(tool_name) if func: if asyncio.iscoroutinefunction(func): tool_result = await func(**parameters) else: tool_result = func(**parameters) results.append({ "type": "custom_tool", "name": tool_name, "data": tool_result, "success": True, "category": custom_tool.category }) else: results.append({ "type": "error", "message": f"Custom tool function not found: {tool_name}", "success": False }) else: # HTTP endpoint execution import aiohttp async with aiohttp.ClientSession() as session: async with session.request( custom_tool.method, custom_tool.endpoint, json=parameters ) as response: if response.status == 200: tool_result = await response.json() results.append({ "type": "custom_tool", "name": tool_name, "data": tool_result, "success": True, "category": custom_tool.category }) else: error_text = await response.text() results.append({ "type": "error", "message": f"HTTP {response.status}: {error_text}", "success": False }) except Exception as e: results.append({ "type": "error", "message": f"Custom tool execution error: {e}", "success": False }) else: # Execute standard MCP tool try: async with Client(MCP_SERVER_PATH) as client: tool_result = await client.call_tool(tool_name, parameters) tool_data = extract_result_data(tool_result) results.append({ "type": "tool", "name": tool_name, "data": tool_data, "success": "error" not in tool_data }) except Exception as e: results.append({ "type": "error", "message": f"MCP tool error: {e}", "success": False }) elapsed_time = int((time.time() - start_time) * 1000) return results, elapsed_time, False except Exception as e: elapsed_time = int((time.time() - start_time) * 1000) return [{ "type": "error", "message": f"Query execution error: {e}", "success": False }], elapsed_time, False # ============================================================================ # 8. ENHANCED RESULT FORMATTING # ============================================================================ def enhanced_format_result_for_display(result: Dict) -> str: """Enhanced result formatting for custom tools and batch operations""" if result.get("type") == "custom_tool": tool_name = result.get("name", "Unknown") category = result.get("category", "custom") data = result.get("data", {}) if isinstance(data, dict) and "error" in data: return f"❌ [Custom Tool Error] {data['error']}" # Format based on tool category if category == "conversion": if "expression" in data: return f"🔄 [Converter] {data['expression']}" else: return f"🔄 [Converter] {tool_name}: {json.dumps(data, indent=2)}" elif category == "text": if "word_count" in data: return f"📝 [Text Analysis] Words: {data['word_count']}, Characters: {data['character_count']}, Sentences: {data['sentence_count']}" else: return f"📝 [Text Tool] {tool_name}: {json.dumps(data, indent=2)}" else: return f"🔧 [Custom {category.title()}] {tool_name}: {json.dumps(data, indent=2)}" elif result.get("type") == "tool": # Use existing formatting for standard tools tool_name = result.get("name") data = result.get("data", {}) if "operation_id" in result: # This is from a batch operation op_id = result["operation_id"] exec_time = result.get("execution_time_ms", 0) deps = result.get("dependencies", []) formatted = format_result_for_display(tool_name, data) batch_info = f" [Batch: {op_id}, {exec_time}ms" if deps: batch_info += f", deps: {', '.join(deps)}" batch_info += "]" return formatted + batch_info else: return format_result_for_display(tool_name, data) elif result.get("type") == "error": op_id = result.get("operation_id") if op_id: return f"❌ [Batch Error - {op_id}] {result.get('message', 'Unknown error')}" else: return f"❌ [Error] {result.get('message', 'Unknown error')}" else: return f"ℹ️ [Result] {json.dumps(result, indent=2)}" # ============================================================================ # 9. ENHANCED SIDEBAR WITH TOOL MANAGEMENT # ============================================================================ def enhanced_sidebar(): """Enhanced sidebar with tool management features""" with st.sidebar: st.header("⚙️ Enhanced Configuration") # Existing configuration sections... # (Keep your existing sidebar code) # Add new sections for enhanced features st.divider() # Custom Tools Section st.subheader("🔧 Custom Tools") custom_tools = st.session_state.custom_registry.list_tools() if custom_tools: st.success(f"✅ {len(custom_tools)} custom tools registered") # Show tool categories categories = {} for tool in custom_tools: categories[tool.category] = categories.get(tool.category, 0) + 1 for category, count in categories.items(): st.write(f" • {category.title()}: {count} tools") # Quick tool search if len(custom_tools) > 3: search_query = st.text_input("🔍 Search tools:", key="tool_search") if search_query: found_tools = st.session_state.custom_registry.search_tools(search_query) st.write(f"Found {len(found_tools)} tools:") for tool in found_tools[:3]: st.write(f" • {tool.name} ({tool.category})") else: st.info("No custom tools yet") if st.button("🔧 Manage Tools"): st.session_state.show_tool_management = True # Batch Operations Section st.subheader("🔄 Batch Operations") # Batch operation status if hasattr(st.session_state, 'last_batch_info'): batch_info = st.session_state.last_batch_info st.info(f"Last batch: {batch_info.get('operation_count', 0)} operations in {batch_info.get('total_time_ms', 0)}ms") # Batch operation examples st.write("**Quick Examples:**") if st.button("📊 Math Chain", key="batch_math"): st.session_state.example_query = "Calculate 15 + 27, then find sine of that result" if st.button("🔄 Convert Chain", key="batch_convert"): st.session_state.example_query = "Convert 5 feet to meters, then multiply by 2" # Performance metrics st.divider() st.subheader("📈 Performance") # Show RAG effectiveness if hasattr(st.session_state, 'rag_stats'): rag_stats = st.session_state.rag_stats st.metric("RAG Accuracy", f"{rag_stats.get('accuracy', 0):.1%}") st.metric("Avg Similarity", f"{rag_stats.get('avg_similarity', 0):.3f}") # Show tool usage stats try: recent_entries = st.session_state.chat_history_db.get_chat_history(limit=20) if recent_entries: tool_usage = {} for entry in recent_entries: tool = entry.get('tool_name') if tool: tool_usage[tool] = tool_usage.get(tool, 0) + 1 if tool_usage: st.write("**Tool Usage (Last 20):**") for tool, count in sorted(tool_usage.items(), key=lambda x: x[1], reverse=True)[:5]: st.write(f" • {tool}: {count}x") except: pass # ============================================================================ # 10. USAGE EXAMPLES # ============================================================================ # Example configuration for your Streamlit app ENHANCED_SAMPLE_QUERIES = """ **Single Operations:** - 15 + 27 - convert 5 feet to meters - analyze this text: Hello world - sine of 30 degrees **Batch Operations:** - Calculate 15 + 27, then find sine of that result - Convert 100 km to miles, then multiply by 1.5 - Analyze text 'Hello world', then echo the word count - Calculate 2^3, then convert that inches to cm **Custom Tool Examples:** - Convert 5.5 feet to centimeters - How many words in: The quick brown fox jumps - Convert 100 kilometers to miles - Text statistics for: Lorem ipsum dolor sit amet """ # Integration example for your main app: def integrate_enhancements(): """How to integrate these enhancements into your existing app""" # 1. Replace your query execution with enhanced version # In your submit button handler: if submit_button and user_query: results, elapsed_time, is_batch = asyncio.run(enhanced_execute_query(user_query)) # Store batch info for sidebar display if is_batch: st.session_state.last_batch_info = { 'operation_count': len(results), 'total_time_ms': elapsed_time, 'timestamp': datetime.now() } # Use enhanced result formatting for result in results: formatted_display = enhanced_format_result_for_display(result) if result.get('success', True): st.markdown(f'<div class="tool-call">{formatted_display}</div>', unsafe_allow_html=True) else: st.markdown(f'<div class="error-message">{formatted_display}</div>', unsafe_allow_html=True) # 2. Add tool management UI if st.session_state.get('show_tool_management', False): render_tool_management_ui(st.session_state.custom_registry) render_batch_operations_ui() if st.button("◀️ Back to Main"): st.session_state.show_tool_management = False st.rerun() # 3. Use enhanced sidebar enhanced_sidebar() # 4. Update sample queries st.markdown("### 💡 Enhanced Example Queries") st.markdown(ENHANCED_SAMPLE_QUERIES) # ============================================================================ # 11. YAML CONFIGURATION SUPPORT # ============================================================================ def export_tools_to_yaml(registry: DynamicToolRegistry, filename: str = "custom_tools.yaml"): """Export custom tools to YAML for easy sharing""" tools_data = {} for name, tool in registry.tools.items(): tools_data[name] = { 'description': tool.description, 'category': tool.category, 'parameters': [asdict(param) for param in tool.parameters], 'endpoint': tool.endpoint, 'method': tool.method, 'examples': tool.examples, 'tags': tool.tags, 'author': tool.author, 'version': tool.version } with open(filename, 'w') as f: yaml.dump(tools_data, f, default_flow_style=False, indent=2) return filename def import_tools_from_yaml(registry: DynamicToolRegistry, filename: str): """Import custom tools from YAML file""" try: with open(filename, 'r') as f: tools_data = yaml.safe_load(f) imported_count = 0 for name, tool_data in tools_data.items(): # Convert parameters back to ToolParameter objects parameters = [ToolParameter(**param) for param in tool_data['parameters']] tool_def = CustomToolDefinition( name=name, description=tool_data['description'], category=tool_data['category'], parameters=parameters, endpoint=tool_data['endpoint'], method=tool_data.get('method', 'POST'), examples=tool_data.get('examples', []), tags=tool_data.get('tags', []), author=tool_data.get('author', 'Imported'), version=tool_data.get('version', '1.0.0') ) if registry.register_tool(tool_def): imported_count += 1 return imported_count except Exception as e: logging.error(f"Failed to import tools from YAML: {e}") return 0

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/digital-duck/mcp_demo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server