Skip to main content
Glama

DP-MCP Server

by devraj21
demo_ai_tools.py2.78 kB
#!/usr/bin/env python3 """ Demo script showing AI capabilities of DP-MCP server. """ import sys import os import asyncio sys.path.append('src') from dp_mcp.ai.ai_tools import initialize_ai_tools, get_ai_tools from dp_mcp.tools.postgres_tools import execute_query async def demo_ai_capabilities(): """Demonstrate AI capabilities.""" print("🤖 DP-MCP AI Capabilities Demo") print("="*40) # Initialize AI tools ai_tools = initialize_ai_tools("demo") if not ai_tools: print("❌ AI tools not available") return print("✅ AI tools initialized successfully") # 1. Get AI system status print("\n1️⃣ AI System Status:") status = ai_tools.get_ai_status() print(f"Environment: {status.get('environment', 'N/A')}") print(f"Available models: {status.get('available_models', [])}") print(f"Privacy level: {status.get('privacy_level', 'N/A')}") print(f"Features enabled: {status.get('features_enabled', {})}") # 2. Demonstrate natural language query print("\n2️⃣ Natural Language Query Simulation:") print("Question: 'How many users are in the database?'") print("AI would convert this to: SELECT COUNT(*) FROM users;") print("This feature works through the MCP server tools.") # 3. Show actual database query print("\n3️⃣ Database Query Example:") try: result = await execute_query("SELECT COUNT(*) as user_count FROM users", 10) print(f"Actual query result: {result}") except Exception as e: print(f"Database query: {e}") # 4. Privacy demonstration print("\n4️⃣ Privacy Protection Demo:") sample_data = [ {"name": "John Doe", "email": "john@example.com", "phone": "555-123-4567"}, {"name": "Jane Smith", "email": "jane@example.com", "ssn": "123-45-6789"} ] sanitized = ai_tools.privacy_manager.sanitize_data(sample_data) print("Original data contains PII") print(f"Sanitized data: {sanitized}") print("\n🎉 AI Demo completed!") print("\n📋 Available AI MCP Tools:") print("• ask_natural_language_query - Convert questions to SQL") print("• explain_query_with_ai - AI-powered query explanations") print("• get_ai_data_insights - Generate insights about your data") print("• analyze_table_patterns - Pattern analysis with AI") print("• generate_ai_data_report - Comprehensive AI reports") print("• get_ai_system_status - Check AI system status") print("\nTo enable more AI features:") print("1. Add API keys to .env.ai file") print("2. Install Ollama for local models") print("3. Restart server with --ai-env production") if __name__ == "__main__": asyncio.run(demo_ai_capabilities())

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/devraj21/dp-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server