Skip to main content
Glama
TEST_IMPLEMENTATION_SUMMARY.md8.03 kB
# Test Suite Implementation Summary ## Task Completed: Create comprehensive test suite for all tools ### Overview Successfully implemented a comprehensive test suite for the Daniel LightRAG MCP Server covering all 22 MCP tools with 131 tests across multiple categories. ### Test Suite Structure ``` tests/ ├── __init__.py # Test package initialization ├── conftest.py # Pytest configuration and fixtures (17 fixtures) ├── test_server.py # MCP server unit tests (34 tests) ├── test_client.py # LightRAG client unit tests (43 tests) ├── test_models.py # Pydantic model validation tests (44 tests) ├── test_integration.py # Integration tests with mock server (10 tests) ├── test_runner.py # Test runner script └── README.md # Comprehensive test documentation ``` ### Test Coverage Achieved #### ✅ All 22 MCP Tools Tested: **Document Management Tools (8 tools):** - `insert_text` - Insert single text document - `insert_texts` - Insert multiple text documents - `upload_document` - Upload document file - `scan_documents` - Scan for new documents - `get_documents` - Retrieve all documents - `get_documents_paginated` - Retrieve documents with pagination - `delete_document` - Delete specific document - `clear_documents` - Clear all documents **Query Tools (2 tools):** - `query_text` - Query with text - `query_text_stream` - Stream query results **Knowledge Graph Tools (7 tools):** - `get_knowledge_graph` - Retrieve knowledge graph - `get_graph_labels` - Get graph labels - `check_entity_exists` - Check entity existence - `update_entity` - Update entity - `update_relation` - Update relation - `delete_entity` - Delete entity - `delete_relation` - Delete relation **System Management Tools (5 tools):** - `get_pipeline_status` - Get pipeline status - `get_track_status` - Get track status - `get_document_status_counts` - Get document status counts - `clear_cache` - Clear cache - `get_health` - Health check #### ✅ Test Categories Implemented: 1. **Unit Tests (test_server.py - 34 tests)** - Tool listing verification (all 22 tools registered) - Argument validation for all tools - Success response creation and formatting - Error response creation and formatting - Individual tool functionality testing - Error handling scenarios 2. **Client Tests (test_client.py - 43 tests)** - Client initialization and configuration - HTTP error mapping to custom exceptions - All 22 API method implementations - Request/response handling - Streaming functionality - Connection and timeout error handling - Context manager functionality 3. **Model Tests (test_models.py - 44 tests)** - Enum validation (DocStatus, QueryMode, PipelineStatus) - Common model validation (TextDocument, PaginationInfo) - Request model validation (all 22 request types) - Response model validation (all 22 response types) - Serialization/deserialization testing - Edge case and validation error testing 4. **Integration Tests (test_integration.py - 10 tests)** - Full workflow testing (document management, query, system) - Error scenario testing - Streaming integration testing - Concurrent operation testing - Tool listing completeness verification #### ✅ Test Quality Features: - **Mock HTTP Responses**: All API endpoints tested with realistic mock responses - **Input Validation**: All tools tested with valid and invalid inputs - **Error Handling**: All error types tested (connection, validation, API, timeout, server) - **Streaming Functionality**: Query streaming tested with async generators - **Pydantic Model Validation**: All request/response models thoroughly tested - **Integration Workflows**: Complete end-to-end workflows tested - **Concurrent Operations**: Multi-tool concurrent execution tested - **Edge Cases**: Boundary conditions and edge cases covered ### Key Implementation Details #### Test Fixtures (conftest.py): - `lightrag_client`: Mock LightRAG client for testing - `mock_response`: Factory for creating mock HTTP responses - `mock_streaming_response`: Factory for creating mock streaming responses - Sample data fixtures for all response types (insert, query, documents, graph, health, etc.) #### Mock Strategies: - **HTTP Client Mocking**: Uses `unittest.mock.AsyncMock` to mock httpx client - **Server Response Mocking**: Mock LightRAG server with realistic responses - **Streaming Mocking**: Mock async generators for streaming responses - **Error Injection**: Mock various error conditions for comprehensive error testing #### Test Runner Features: - Support for running specific test categories (unit, integration, models, server, client) - Verbose and quiet modes - Coverage reporting integration - Dependency installation automation - Cross-platform compatibility (macOS/Linux) ### Test Execution Results ```bash # All tests passing python3 tests/test_runner.py all Running command: python3 -m pytest -q tests/ --asyncio-mode=auto ................................................................................................................................... 131 passed in 1.14s ``` #### Performance Metrics: - **Total Tests**: 131 tests - **Execution Time**: ~1.14 seconds - **Test Categories**: 4 main categories - **Tools Covered**: 22/22 (100%) - **Error Scenarios**: Comprehensive coverage ### Requirements Validation ✅ **Write unit tests for all 22 MCP tools with mock HTTP responses** - All 22 tools have dedicated unit tests - Mock HTTP responses implemented for all API endpoints - Success and error scenarios covered ✅ **Test input validation using the Pydantic models** - All Pydantic models tested for validation - Valid and invalid input scenarios covered - Edge cases and boundary conditions tested ✅ **Test error handling scenarios for each tool** - Connection errors, validation errors, API errors tested - HTTP status code mapping verified - Custom exception hierarchy tested ✅ **Test streaming functionality for query tools** - Streaming query tools tested with async generators - Chunk collection and response formatting verified - Streaming error scenarios covered ✅ **Create integration tests with mock LightRAG server responses** - Full workflow integration tests implemented - Mock LightRAG server with realistic behavior - End-to-end scenarios tested ### Dependencies Added Updated `pyproject.toml` with test dependencies: ```toml [project.optional-dependencies] dev = [ "pytest>=7.0.0", "pytest-asyncio>=0.21.0", "pytest-cov>=4.0.0", "pytest-mock>=3.10.0", "black>=23.0.0", "isort>=5.12.0", "mypy>=1.0.0", ] ``` ### Configuration Files - `pytest.ini`: Pytest configuration with async support - `tests/README.md`: Comprehensive test documentation - `tests/test_runner.py`: Executable test runner script ### Code Quality Improvements During test implementation, also fixed: - Deprecated Pydantic `.dict()` method calls → `.model_dump()` - Improved error handling in client code - Enhanced mock response handling - Fixed async fixture configuration ### Continuous Integration Ready The test suite is designed for CI/CD environments: - No external dependencies (all mocked) - Parallel execution support - Clear exit codes - Comprehensive reporting - Fast execution (<2 seconds) ### Summary Successfully implemented a comprehensive test suite that: - ✅ Tests all 22 MCP tools with mock HTTP responses - ✅ Validates all Pydantic models with edge cases - ✅ Tests error handling scenarios comprehensively - ✅ Tests streaming functionality with async generators - ✅ Provides integration tests with mock server responses - ✅ Achieves 131 tests with 100% pass rate - ✅ Executes in ~1.14 seconds - ✅ Provides excellent documentation and tooling The test suite ensures the reliability, maintainability, and correctness of the Daniel LightRAG MCP Server implementation.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/desimpkins/daniel-lightrag-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server