# Test Suite Implementation Summary
## Task Completed: Create comprehensive test suite for all tools
### Overview
Successfully implemented a comprehensive test suite for the Daniel LightRAG MCP Server covering all 22 MCP tools with 131 tests across multiple categories.
### Test Suite Structure
```
tests/
├── __init__.py # Test package initialization
├── conftest.py # Pytest configuration and fixtures (17 fixtures)
├── test_server.py # MCP server unit tests (34 tests)
├── test_client.py # LightRAG client unit tests (43 tests)
├── test_models.py # Pydantic model validation tests (44 tests)
├── test_integration.py # Integration tests with mock server (10 tests)
├── test_runner.py # Test runner script
└── README.md # Comprehensive test documentation
```
### Test Coverage Achieved
#### ✅ All 22 MCP Tools Tested:
**Document Management Tools (8 tools):**
- `insert_text` - Insert single text document
- `insert_texts` - Insert multiple text documents
- `upload_document` - Upload document file
- `scan_documents` - Scan for new documents
- `get_documents` - Retrieve all documents
- `get_documents_paginated` - Retrieve documents with pagination
- `delete_document` - Delete specific document
- `clear_documents` - Clear all documents
**Query Tools (2 tools):**
- `query_text` - Query with text
- `query_text_stream` - Stream query results
**Knowledge Graph Tools (7 tools):**
- `get_knowledge_graph` - Retrieve knowledge graph
- `get_graph_labels` - Get graph labels
- `check_entity_exists` - Check entity existence
- `update_entity` - Update entity
- `update_relation` - Update relation
- `delete_entity` - Delete entity
- `delete_relation` - Delete relation
**System Management Tools (5 tools):**
- `get_pipeline_status` - Get pipeline status
- `get_track_status` - Get track status
- `get_document_status_counts` - Get document status counts
- `clear_cache` - Clear cache
- `get_health` - Health check
#### ✅ Test Categories Implemented:
1. **Unit Tests (test_server.py - 34 tests)**
- Tool listing verification (all 22 tools registered)
- Argument validation for all tools
- Success response creation and formatting
- Error response creation and formatting
- Individual tool functionality testing
- Error handling scenarios
2. **Client Tests (test_client.py - 43 tests)**
- Client initialization and configuration
- HTTP error mapping to custom exceptions
- All 22 API method implementations
- Request/response handling
- Streaming functionality
- Connection and timeout error handling
- Context manager functionality
3. **Model Tests (test_models.py - 44 tests)**
- Enum validation (DocStatus, QueryMode, PipelineStatus)
- Common model validation (TextDocument, PaginationInfo)
- Request model validation (all 22 request types)
- Response model validation (all 22 response types)
- Serialization/deserialization testing
- Edge case and validation error testing
4. **Integration Tests (test_integration.py - 10 tests)**
- Full workflow testing (document management, query, system)
- Error scenario testing
- Streaming integration testing
- Concurrent operation testing
- Tool listing completeness verification
#### ✅ Test Quality Features:
- **Mock HTTP Responses**: All API endpoints tested with realistic mock responses
- **Input Validation**: All tools tested with valid and invalid inputs
- **Error Handling**: All error types tested (connection, validation, API, timeout, server)
- **Streaming Functionality**: Query streaming tested with async generators
- **Pydantic Model Validation**: All request/response models thoroughly tested
- **Integration Workflows**: Complete end-to-end workflows tested
- **Concurrent Operations**: Multi-tool concurrent execution tested
- **Edge Cases**: Boundary conditions and edge cases covered
### Key Implementation Details
#### Test Fixtures (conftest.py):
- `lightrag_client`: Mock LightRAG client for testing
- `mock_response`: Factory for creating mock HTTP responses
- `mock_streaming_response`: Factory for creating mock streaming responses
- Sample data fixtures for all response types (insert, query, documents, graph, health, etc.)
#### Mock Strategies:
- **HTTP Client Mocking**: Uses `unittest.mock.AsyncMock` to mock httpx client
- **Server Response Mocking**: Mock LightRAG server with realistic responses
- **Streaming Mocking**: Mock async generators for streaming responses
- **Error Injection**: Mock various error conditions for comprehensive error testing
#### Test Runner Features:
- Support for running specific test categories (unit, integration, models, server, client)
- Verbose and quiet modes
- Coverage reporting integration
- Dependency installation automation
- Cross-platform compatibility (macOS/Linux)
### Test Execution Results
```bash
# All tests passing
python3 tests/test_runner.py all
Running command: python3 -m pytest -q tests/ --asyncio-mode=auto
...................................................................................................................................
131 passed in 1.14s
```
#### Performance Metrics:
- **Total Tests**: 131 tests
- **Execution Time**: ~1.14 seconds
- **Test Categories**: 4 main categories
- **Tools Covered**: 22/22 (100%)
- **Error Scenarios**: Comprehensive coverage
### Requirements Validation
✅ **Write unit tests for all 22 MCP tools with mock HTTP responses**
- All 22 tools have dedicated unit tests
- Mock HTTP responses implemented for all API endpoints
- Success and error scenarios covered
✅ **Test input validation using the Pydantic models**
- All Pydantic models tested for validation
- Valid and invalid input scenarios covered
- Edge cases and boundary conditions tested
✅ **Test error handling scenarios for each tool**
- Connection errors, validation errors, API errors tested
- HTTP status code mapping verified
- Custom exception hierarchy tested
✅ **Test streaming functionality for query tools**
- Streaming query tools tested with async generators
- Chunk collection and response formatting verified
- Streaming error scenarios covered
✅ **Create integration tests with mock LightRAG server responses**
- Full workflow integration tests implemented
- Mock LightRAG server with realistic behavior
- End-to-end scenarios tested
### Dependencies Added
Updated `pyproject.toml` with test dependencies:
```toml
[project.optional-dependencies]
dev = [
"pytest>=7.0.0",
"pytest-asyncio>=0.21.0",
"pytest-cov>=4.0.0",
"pytest-mock>=3.10.0",
"black>=23.0.0",
"isort>=5.12.0",
"mypy>=1.0.0",
]
```
### Configuration Files
- `pytest.ini`: Pytest configuration with async support
- `tests/README.md`: Comprehensive test documentation
- `tests/test_runner.py`: Executable test runner script
### Code Quality Improvements
During test implementation, also fixed:
- Deprecated Pydantic `.dict()` method calls → `.model_dump()`
- Improved error handling in client code
- Enhanced mock response handling
- Fixed async fixture configuration
### Continuous Integration Ready
The test suite is designed for CI/CD environments:
- No external dependencies (all mocked)
- Parallel execution support
- Clear exit codes
- Comprehensive reporting
- Fast execution (<2 seconds)
### Summary
Successfully implemented a comprehensive test suite that:
- ✅ Tests all 22 MCP tools with mock HTTP responses
- ✅ Validates all Pydantic models with edge cases
- ✅ Tests error handling scenarios comprehensively
- ✅ Tests streaming functionality with async generators
- ✅ Provides integration tests with mock server responses
- ✅ Achieves 131 tests with 100% pass rate
- ✅ Executes in ~1.14 seconds
- ✅ Provides excellent documentation and tooling
The test suite ensures the reliability, maintainability, and correctness of the Daniel LightRAG MCP Server implementation.