Skip to main content
Glama

Recursive Companion MCP

Recursive Companion MCP

An MCP (Model Context Protocol) server that implements iterative refinement through self-critique cycles. Inspired by Hank Besser's recursive-companion, this implementation adds incremental processing to avoid timeouts and enable progress visibility.

Features

  • Incremental Refinement: Avoids timeouts by breaking refinement into discrete steps
  • Mathematical Convergence: Uses cosine similarity to measure when refinement is complete
  • Domain-Specific Optimization: Auto-detects and optimizes for technical, marketing, strategy, legal, and financial domains
  • Progress Visibility: Each step returns immediately, allowing UI updates
  • Parallel Sessions: Support for multiple concurrent refinement sessions
  • Auto Session Tracking: No manual session ID management needed
  • AI-Friendly Error Handling: Actionable diagnostics and recovery hints for AI assistants

How It Works

The refinement process follows a Draft → Critique → Revise → Converge pattern:

  1. Draft: Generate initial response
  2. Critique: Create multiple parallel critiques (using faster models)
  3. Revise: Synthesize critiques into improved version
  4. Converge: Measure similarity and repeat until threshold reached

For detailed architecture diagrams and system design documentation, see ARCHITECTURE.md.

Installation

Prerequisites

  • Python 3.10+
  • uv package manager
  • AWS Account with Bedrock access
  • Claude Desktop app

Setup

  1. Clone the repository:
git clone https://github.com/thinkerz-ai/recursive-companion-mcp.git cd recursive-companion-mcp
  1. Install dependencies:
uv sync
  1. Configure AWS credentials as environment variables or through AWS CLI
  2. Add to Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):

Basic Configuration:

{ "mcpServers": { "recursive-companion": { "command": "/path/to/recursive-companion-mcp/run.sh", "env": { "AWS_REGION": "us-east-1", "AWS_ACCESS_KEY_ID": "your-access-key", "AWS_SECRET_ACCESS_KEY": "your-secret-key" } } } }

Optimized Configuration (Recommended):

{ "mcpServers": { "recursive-companion": { "command": "/path/to/recursive-companion-mcp/run.sh", "env": { "AWS_REGION": "us-east-1", "AWS_ACCESS_KEY_ID": "your-access-key", "AWS_SECRET_ACCESS_KEY": "your-secret-key", "BEDROCK_MODEL_ID": "anthropic.claude-3-sonnet-20240229-v1:0", "CRITIQUE_MODEL_ID": "anthropic.claude-3-haiku-20240307-v1:0", "CONVERGENCE_THRESHOLD": "0.95", "PARALLEL_CRITIQUES": "2", "MAX_ITERATIONS": "5", "REQUEST_TIMEOUT": "600" } } } }

Performance Tips:

  • Use Haiku for CRITIQUE_MODEL_ID for 50% speed improvement
  • Lower CONVERGENCE_THRESHOLD to 0.95 for faster convergence
  • Reduce PARALLEL_CRITIQUES to 2 for better resource usage
  • See API_EXAMPLES.md for more configuration examples

Usage

The tool provides several MCP endpoints for iterative refinement:

Quick Start Examples

Simple refinement (auto-complete):

quick_refine(prompt="Explain the key principles of secure API design", max_wait=60)

Step-by-step refinement (full control):

# Start session start_refinement(prompt="Design a microservices architecture for e-commerce", domain="technical") # Continue iteratively continue_refinement() # Draft phase continue_refinement() # Critique phase continue_refinement() # Revision phase # Get final result get_final_result()

Session management:

current_session() # Check active session list_refinement_sessions() # List all sessions abort_refinement() # Stop and get best result so far

Complete API Reference

For comprehensive examples with realistic scenarios, error handling patterns, and integration workflows, see API_EXAMPLES.md.

Available Tools

  • start_refinement - Begin new refinement session with domain detection
  • continue_refinement - Advance session through draft→critique→revise cycles
  • get_final_result - Retrieve completed refinement
  • get_refinement_status - Check progress without advancing
  • current_session - Get active session info (no ID needed)
  • list_refinement_sessions - See all active sessions
  • abort_refinement - Stop refinement, return best version so far
  • quick_refine - Auto-complete simple refinements (under 60s)

Configuration

Environment VariableDefaultDescription
BEDROCK_MODEL_IDanthropic.claude-3-sonnet-20240229-v1:0Main generation model
CRITIQUE_MODEL_IDSame as BEDROCK_MODEL_IDModel for critiques (use Haiku for speed)
CONVERGENCE_THRESHOLD0.98Similarity threshold for convergence (0.90-0.99)
PARALLEL_CRITIQUES3Number of parallel critiques per iteration
MAX_ITERATIONS10Maximum refinement iterations
REQUEST_TIMEOUT300Timeout in seconds

Performance

With optimized settings:

  • Each iteration: 60-90 seconds
  • Typical convergence: 2-3 iterations
  • Total time: 2-4 minutes (distributed across multiple calls)

Using Haiku for critiques reduces iteration time by ~50%.

AI-Friendly Features

This tool includes special features for AI assistants using it:

  • Auto Session Tracking: The current_session_id is automatically maintained
  • Smart Error Messages: Errors include _ai_ prefixed fields with actionable diagnostics
  • Performance Hints: Responses include optimization tips and predictions
  • Progress Predictions: Convergence tracking includes estimates of remaining iterations

Example AI-helpful error response:

{ "success": false, "error": "No session_id provided and no current session", "_ai_context": { "current_session_id": null, "active_session_count": 2, "recent_sessions": [...] }, "_ai_suggestion": "Use start_refinement to create a new session", "_human_action": "Start a new refinement session first" }

Architecture

┌─────────────┐ ┌──────────────┐ ┌─────────────┐ │ Claude │────▶│ MCP Server │────▶│ Bedrock │ │ Desktop │◀────│ │◀────│ Claude │ └─────────────┘ └──────────────┘ └─────────────┘ │ ▼ ┌──────────────┐ │ Session │ │ Manager │ └──────────────┘

Development

Running tests

uv run pytest tests/

Local testing

uv run python test_incremental.py

Automation Infrastructure

This project includes comprehensive automation for OSS readiness:

  • 🤖 Dependabot: Automated dependency updates with intelligent grouping
  • 🚀 Semantic Release: Automated versioning and releases based on conventional commits
  • 🔒 Security Monitoring: Multi-tool security scanning (Safety, Bandit, CodeQL, Trivy)
  • ✅ Quality Gates: Automated testing, coverage, linting, and type checking
  • 📦 Dependency Management: Advanced dependency health monitoring and updates
Automation Commands
# Verify automation setup uv run python scripts/setup_check.py # Validate workflow configurations uv run python scripts/validate_workflows.py # Manual release (if needed) uv run semantic-release version --noop # dry run uv run semantic-release version --minor # actual release
Development Workflow
  1. Feature Development: Work on feature branches
  2. Pull Requests: Quality gates run automatically
  3. Code Review: Automated security and quality feedback
  4. Merge to develop: Beta releases created automatically
  5. Merge to main: Production releases created automatically

See AUTOMATION.md for complete automation documentation.

Attribution

This project is inspired by recursive-companion by Hank Besser. The original implementation provided the conceptual Draft → Critique → Revise → Converge pattern. This MCP version adds:

  • Session-based incremental processing to avoid timeouts
  • AWS Bedrock integration for Claude and Titan embeddings
  • Domain auto-detection and specialized prompts
  • Mathematical convergence measurement
  • Support for different models for critiques vs generation

Contributing

Contributions are welcome! Please read our Contributing Guide for details.

License

MIT License - see LICENSE file for details.

Acknowledgments

-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

An MCP server that implements iterative refinement of responses through self-critique cycles, breaking the process into discrete steps to avoid timeouts and show progress.

  1. Features
    1. How It Works
      1. Installation
        1. Prerequisites
        2. Setup
      2. Usage
        1. Quick Start Examples
        2. Complete API Reference
        3. Available Tools
      3. Configuration
        1. Performance
          1. AI-Friendly Features
            1. Architecture
              1. Development
                1. Running tests
                2. Local testing
                3. Automation Infrastructure
              2. Attribution
                1. Contributing
                  1. License
                    1. Acknowledgments

                      Related MCP Servers

                      • A
                        security
                        A
                        license
                        A
                        quality
                        An adaptation of the MCP Sequential Thinking Server designed to guide tool usage in problem-solving. This server helps break down complex problems into manageable steps and provides recommendations for which MCP tools would be most effective at each stage.
                        Last updated -
                        1
                        485
                        368
                        MIT License
                      • -
                        security
                        F
                        license
                        -
                        quality
                        An advanced MCP server that implements sophisticated sequential thinking using a coordinated team of specialized AI agents (Planner, Researcher, Analyzer, Critic, Synthesizer) to deeply analyze problems and provide high-quality, structured reasoning.
                        Last updated -
                        243
                        • Linux
                        • Apple
                      • A
                        security
                        A
                        license
                        A
                        quality
                        An advanced MCP server that provides interactive feedback mechanisms with support for various feedback types, multi-language capabilities, and team collaboration features for AI tools like Cursor, Cline, and Windsurf.
                        Last updated -
                        4
                        1
                        MIT License
                        • Apple
                        • Linux
                      • -
                        security
                        F
                        license
                        -
                        quality
                        An MCP server that implements Retrieval-Augmented Generation to efficiently retrieve and process important information from various sources, providing accurate and contextually relevant responses.
                        Last updated -

                      View all related MCP servers

                      MCP directory API

                      We provide all the information about MCP servers via our MCP API.

                      curl -X GET 'https://glama.ai/api/mcp/v1/servers/democratize-technology/recursive-companion-mcp'

                      If you have feedback or need assistance with the MCP directory API, please join our Discord server