Skip to main content
Glama

RLM MCP Server

Servidor MCP (Model Context Protocol) que implementa Recursive Language Models para análise de dados massivos sem poluir o contexto do Claude.

Baseado no paper "Recursive Language Models" do MIT CSAIL.

Por Que Usar?

O Claude Code tradicional:

  • Carrega todo output no contexto

  • Precisa de /compact frequente

  • Limita análise de arquivos grandes

Com RLM MCP:

  • Dados ficam em variáveis fora do contexto

  • Contexto permanece pequeno

  • Analise arquivos de 100MB+ sem compact

Arquitetura

┌─────────────────────────────────────────────────────────────┐ │ Sua máquina local │ │ ┌─────────────────────────────────────────────────────┐ │ │ │ Claude Code │ │ │ │ Tools MCP: rlm_execute, rlm_load_data, etc. │ │ │ └──────────────────────┬──────────────────────────────┘ │ └─────────────────────────┼───────────────────────────────────┘ │ SSH Tunnel (porta 8765) ▼ ┌─────────────────────────────────────────────────────────────┐ │ Seu Servidor (Digital Ocean, AWS, etc.) │ │ ┌─────────────────────────────────────────────────────┐ │ │ │ Docker: rlm-mcp-server │ │ │ │ ┌───────────────────────────────────────────────┐ │ │ │ │ │ Python REPL Persistente │ │ │ │ │ │ variables = {"logs": <500MB>, ...} │ │ │ │ │ │ Dados em memória, NÃO no contexto │ │ │ │ │ └───────────────────────────────────────────────┘ │ │ │ └─────────────────────────────────────────────────────┘ │ └─────────────────────────────────────────────────────────────┘

Instalação

1. No Servidor (via Dokploy ou Docker)

# Clone o repositório git clone https://github.com/seu-usuario/rlm-mcp-server.git cd rlm-mcp-server # Copie o .env cp .env.example .env # Edite .env com suas configurações # Crie o diretório de dados mkdir -p data # Coloque seus arquivos em ./data/ # Build e start docker-compose up -d --build

Via Dokploy

  1. No Dokploy, crie um novo Application

  2. Source: Git → URL do repositório

  3. Build: Docker Compose

  4. Deploy

2. Na Máquina Local (Claude Code)

Opção A: SSH Tunnel (Recomendado)

# Crie um túnel SSH para a porta do servidor ssh -L 8765:localhost:8765 root@seu-servidor.com -N & # O túnel fica rodando em background

Opção B: Uso Local (sem servidor remoto)

Se quiser rodar localmente para testes:

cd rlm-mcp-server pip install -e . # Teste manualmente python -c "from rlm_mcp.server import main; main()"

3. Configure o Claude Code

Adicione ao ~/.claude/claude.json:

{ "mcpServers": { "rlm": { "type": "sse", "url": "https://rlm.seudominio.com/sse", "headers": { "Authorization": "Bearer SUA_API_KEY_AQUI" } } } }

Nota: Substitua rlm.seudominio.com pelo domínio configurado no Traefik/Dokploy.

Alternativa - via SSH tunnel (se não quiser expor publicamente):

{ "mcpServers": { "rlm": { "command": "socat", "args": ["TCP:localhost:8765", "STDIO"] } } }

4. Reinicie o Claude Code

# Feche e abra novamente, ou: claude --mcp-restart

Uso

Tools Disponíveis

Tool

Descrição

rlm_load_data

Carrega dados diretamente em variável

rlm_load_file

Carrega arquivo do servidor

rlm_execute

Executa código Python

rlm_list_vars

Lista variáveis disponíveis

rlm_var_info

Info detalhada de uma variável

rlm_clear

Limpa variáveis

rlm_memory

Estatísticas de memória

Exemplos de Uso no Claude Code

Analisar logs massivos:

Você: "Analise o log /data/app.log e encontre todos os erros" Claude: [usa rlm_load_file para carregar em variável 'logs'] Claude: [usa rlm_execute com código Python para filtrar erros] Claude: "Encontrei 1,234 erros. Os mais comuns são..."

Busca exata em código:

Você: "Quantas vezes 'TODO' aparece perto de 'FIXME' no código?" Claude: [usa rlm_load_file para carregar código] Claude: [usa rlm_execute]: import re matches = re.findall(r'TODO.{0,50}FIXME|FIXME.{0,50}TODO', data) print(f"Encontrados: {len(matches)}")

Agregação de dados:

Você: "Agrupe os logs por hora e conte requests" Claude: [usa rlm_execute]: from collections import Counter hours = [line.split()[0][:13] for line in logs if 'request' in line] counts = Counter(hours) for hour, count in counts.most_common(10): print(f"{hour}: {count}")

Segurança

Sandbox Python

O REPL executa em sandbox com:

  • Imports permitidos: re, json, math, collections, datetime, csv, etc.

  • Imports bloqueados: os, subprocess, socket, requests, etc.

  • Funções bloqueadas: exec, eval, open, __import__, etc.

Acesso a Arquivos

  • Somente arquivos em /data/ são acessíveis

  • Volume montado como read-only

  • Path traversal é bloqueado

Rede

  • Container em rede isolada (sem acesso à internet)

  • Conexão apenas via localhost (SSH tunnel)

Configuração

Variáveis de Ambiente

Variável

Padrão

Descrição

RLM_MAX_MEMORY_MB

1024

Limite de memória para variáveis

RLM_API_KEY

(vazio)

API key para autenticação (opcional)

Limites de Recursos (Docker)

deploy: resources: limits: cpus: '2' memory: 2G

Troubleshooting

Claude Code não encontra o MCP

  1. Verifique se o túnel SSH está ativo: ps aux | grep ssh

  2. Teste conexão: nc -zv localhost 8765

  3. Verifique logs: docker logs rlm-mcp-server

Erro "SecurityError: Import bloqueado"

O sandbox bloqueia imports perigosos. Use apenas imports permitidos.

Memória insuficiente

  1. Aumente RLM_MAX_MEMORY_MB

  2. Use rlm_clear para limpar variáveis não usadas

  3. Processe dados em chunks menores

Desenvolvimento

# Clone git clone https://github.com/seu-usuario/rlm-mcp-server.git cd rlm-mcp-server # Ambiente virtual python -m venv venv source venv/bin/activate # Instale em modo desenvolvimento pip install -e ".[dev]" # Testes pytest # Rode localmente rlm-mcp

Licença

MIT

Referências

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/delonsp/rlm-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server