Skip to main content
Glama

Custom MCP Server on Databricks Apps

databricks.yml1.47 kB
bundle: name: mcp-mmolony-waf-bundles sync: include: - .build artifacts: default: type: whl path: . build: uv build --wheel resources: apps: waf-mcp-server: name: "mcp-mmolony-waf" description: "MCP Server on Databricks Apps for the Well Architected Framework" source_code_path: ./.build resources: - name: "sql_warehouse" description: "A SQL warehouse for the app to use" sql_warehouse: id: 4b9b953939869799 permission: "CAN_USE" # # Catalog and Schema for WAF data # schemas: # waf_schema: # name: waf_data_model # catalog_name: db_well_architected_framework # comment: "Schema containing Well-Architected Framework reference data" # # Job to load CSV data into tables # jobs: # load_waf_data: # name: "Load WAF CSV Data" # description: "Loads WAF CSV files into Unity Catalog tables" # tasks: # - task_key: create_tables # notebook_task: # notebook_path: ./setup/load_waf_tables.py # source: WORKSPACE # existing_cluster_id: "${var.cluster_id}" # libraries: # - whl: ./dist/*.whl # schedule: # quartz_cron_expression: "0 0 2 * * ?" # Run daily at 2 AM # timezone_id: "UTC" # pause_status: "PAUSED" # Start paused, run manually to load data targets: dev: mode: development default: true

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/db-mattmolony/mcp-mmolony-waf'

If you have feedback or need assistance with the MCP directory API, please join our Discord server