Skip to main content
Glama

GLM Vision Server

by danilofalcao

MCP Server GLM Vision

A Model Context Protocol (MCP) server that integrates GLM-4.5V from Z.AI with Claude Code.

Features

  • Image Analysis: Analyze images using GLM-4.5V's vision capabilities

  • Local File Support: Analyze local image files or URLs

  • Configurable: Easy setup with environment variables

Installation

Prerequisites

  • Python 3.10 or higher

  • GLM API key from Z.AI

  • Claude Code installed

Setup

  1. Clone or create the project directory:

    cd /path/to/your/project
  2. Create and activate virtual environment:

    python3 -m venv env source env/bin/activate # On Windows: env\Scripts\activate
  3. Install dependencies:

    pip install -r requirements.txt # or with uv (recommended) uv pip install -r requirements.txt
  4. Set up environment variables:

    cp .env.example .env # Edit .env with your GLM API key from Z.AI
  5. Add the server to Claude Code:

    # Using uv (recommended) uv run mcp install -e . --name "GLM Vision Server" # Or manually add to Claude Desktop configuration: claude mcp add-json --scope user glm-vision '{ "type": "stdio", "command": "/path/to/your/project/env/bin/python", "args": ["/path/to/your/project/glm-vision.py"], "env": {"GLM_API_KEY": "your_api_key_here"} }'

Configuration

Set these environment variables in your .env file:

Variable

Description

Default

GLM_API_KEY

Your GLM API key from Z.AI

(required)

GLM_API_BASE

GLM API base URL

https://api.z.ai/api/paas/v4

GLM_MODEL

Model name to use

glm-4.5v

Usage

Available Tools

glm-vision

Analyze an image file using GLM-4.5V's vision capabilities. Supports both local files and URLs.

Parameters:

  • image_path (required): Local file path or URL of the image to analyze

  • prompt (required): What to ask about the image

  • temperature (optional): Response randomness (0.0-1.0, default: 0.7)

  • thinking (optional): Enable thinking mode to see model's reasoning process (default: false)

  • max_tokens (optional): Maximum tokens in response (max 64K, default: 2048)

Example:

Use the glm-vison tool with: - image_path: "/path/to/your/image.jpg" - prompt: "Describe what you see in this image"

Testing

Test the server using the MCP Inspector:

# With uv uv run python glm-vision.py # Or with python python glm-vision.py

Development

Running Tests

# Install development dependencies pip install -e ".[dev]" # Run tests pytest # Format code black . isort . # Type checking mypy glm-vision.py

Troubleshooting

  1. API Key Issues: Make sure your GLM_API_KEY is correctly set in the environment

  2. Connection Problems: Check your internet connection and API endpoint

  3. Model Errors: Verify that the model name (GLM_MODEL) is correct and available

License

MIT License - see LICENSE file for details.

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes

  4. Add tests if applicable

  5. Submit a pull request

Support

For issues related to the GLM API, contact Z.AI support. For MCP server issues, please create an issue in the repository.

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/danilofalcao/mcp-server-glm-vision'

If you have feedback or need assistance with the MCP directory API, please join our Discord server