Skip to main content
Glama

Agile Team MCP Server

A team of Agent Personas wrapped in an MCP server that has the ability to leverage at scale massive compute by wrapping various LLM providers to perform activities as an Agile Team Persona.

Features

  • Model Wrapping: Send prompts to multiple LLM models with a unified interface

  • Provider/Model Correction: Automatically correct and validate provider and model names

  • File Support: Send prompts from files and save responses to files

  • Provider/Model Discovery: List available providers and models

  • Persona Tools: Specialized personas like Business Analyst, Product Manager, Spec Writer, and Team Decision Maker

Setup

Installation

# Clone and install git clone https://github.com/danielscholl/agile-team-mcp-server.git cd agile-team-mcp-server uv sync # Install uv pip install -e . # Run tests to verify installation uv run pytest

Environment Configuration

Create and edit your .env file with your API keys:

# Create environment file from template cp .env.sample .env

Required API keys in your .env file:

# Required API keys OPENAI_API_KEY=your_openai_api_key_here ANTHROPIC_API_KEY=your_anthropic_api_key_here GEMINI_API_KEY=your_gemini_api_key_here # For Google Gemini models GROQ_API_KEY=your_groq_api_key_here DEEPSEEK_API_KEY=your_deepseek_api_key_here OLLAMA_HOST=http://localhost:11434 # Optional model configuration DEFAULT_MODEL=openai:gpt-4o-mini DEFAULT_TEAM_MODELS=["openai:gpt-4.1","anthropic:claude-3-7-sonnet","gemini:gemini-2.5-pro"] DEFAULT_DECISION_MAKER_MODEL=openai:gpt-4o-mini

MCP Server Configuration

To utilize this MCP server directly in other projects either use the buttons to install in VSCode, edit the .mcp.json file directory.

Clients tend to have slighty different configurations

Install with UV in VS Code Install with Docker in VS Code

Configure for Claude.app

{ "mcpServers": { "agile-team": { "command": "uvx", "args": [ "--from", "git+https://github.com/danielscholl/agile-team-mcp-server@main", "agile-team" ], "env": { "OPENAI_API_KEY": "<YOUR_OPENAI_KEY>", "ANTHROPIC_API_KEY": "<YOUR_ANTHROPIC_KEY>", "GEMINI_API_KEY": "<YOUR_GEMINI_KEY>", "GROQ_API_KEY": "<YOUR_GROQ_KEY>", "DEEPSEEK_API_KEY": "<YOUR_DEEPSEEK_KEY>", "OLLAMA_HOST": "http://localhost:11434", "DEFAULT_MODEL": "openai:gpt-4o-mini", "DEFAULT_TEAM_MODELS": "[\"openai:gpt-4.1\",\"anthropic:claude-3-7-sonnet\",\"gemini:gemini-2.5-pro\"]", "DEFAULT_DECISION_MAKER_MODEL": "openai:gpt-4o-mini" } } } }

Configure for Claude.code

Setting up Agile Team with Claude Code easily by importing it.

claude mcp add-from-claude-desktop

Note: "--directory" would be the path to the source code if not in the same directory.

# Copy this JSON configuration { "command": "uvx", "args": ["--from", "git+https://github.com/danielscholl/agile-team-mcp-server@main", "agile-team"], "env": { "DEFAULT_MODEL": "openai:gpt-4o-mini", "DEFAULT_TEAM_MODELS": "[\"openai:gpt-4.1\",\"anthropic:claude-3-7-sonnet\",\"gemini:gemini-2.5-pro\"]", "DEFAULT_DECISION_MAKER_MODEL": "openai:gpt-4o-mini" } } # Then run this command in Claude Code claude mcp add agile-team "$(pbpaste)"

To remove the configuration later:

claude mcp remove agile-team

Available LLM Providers

Provider

Short Prefix

Full Prefix

Example Usage

OpenAI

o

openai

o:gpt-4o-mini

Anthropic

a

anthropic

a:claude-3-5-haiku

Google Gemini

g

gemini

g:gemini-2.5-pro-exp-03-25

Groq

q

groq

q:llama-3.1-70b-versatile

DeepSeek

d

deepseek

d:deepseek-coder

Ollama

l

ollama

l:llama3.1

Usage

Command Line

Run the server directly:

uv run agile-team

With MCP Client

With a compatible MCP client, you can connect to the server:

mcp use agile-team

Available Prompts

Interactive conversation starters and guided workflows to help you discover and use server capabilities.

List MCP Assets

Get a comprehensive overview of all server capabilities including tools, personas, providers, and workflows.

Parameters: None required

Usage:

# Get complete server capability overview list_mcp_assets

Returns: Comprehensive markdown documentation including:

  • All available tools with parameters and examples

  • Supported LLM providers with shortcuts and usage examples

  • Agent personas (Business Analyst, Product Manager, Spec Writer, Decision Maker)

  • Quick start workflows for agile team processes

  • Advanced usage patterns and best practices

  • Pro tips for model selection and workflow optimization

This prompt provides a self-documenting overview of the entire agile-team MCP server, making it easy to discover capabilities and get started with productive workflows.

Available Tools

List Available Options

Tools to discover available LLM providers and their supported models.

List Providers Tool

Lists all supported LLM providers and their shortcut prefixes.

Parameters: None required

Examples:

# Simple example list_providers_tool

List Models Tool

Lists all available models for a specific provider.

Parameters:

Parameter

Description

Default Value

provider

The provider to list models for (e.g., "openai", "anthropic")

required

Examples:

# Simple example with full provider name list_models_tool: "openai" # Using provider shortcode list_models_tool: "a" # Lists Anthropic models

Send Prompts to Models

Send text prompts directly to LLM models and get their responses.

Parameters:

Parameter

Description

Default Value

text

The prompt text to send to the models

required

models_prefixed_by_provider

List of models in format "provider:model"

openai:gpt-4o-mini

Features:

  • Send prompts to one or multiple models simultaneously

  • Use model suffixes for special behaviors:

    • :4k or other numbers for thinking token budgets

    • :high for increased reasoning effort (OpenAI only)

Examples:

# Simple example prompt_tool: "Create a plan for implementing user authentication" # Complex example with multiple models and options prompt_tool: "Analyze the trade-offs between microservices and monoliths" ["openai:gpt-4.1:high", "anthropic:claude-3-7-sonnet:4k"]

Work with Files

Process prompts from files and save responses to files for batch processing.

From File Tool

Parameters:

Parameter

Description

Default Value

file_path

Path to the file containing the prompt

required

models_prefixed_by_provider

List of models in format "provider:model"

openai:gpt-4o-mini

Examples:

# Simple example prompt_from_file_tool: "prompts/function.md" # Complex example with specific model prompt_from_file_tool: "prompts/function.md" ["anthropic:claude-3-7-sonnet-20250219"]

From File to File Tool

Parameters:

Parameter

Description

Default Value

file_path

Path to the file containing the prompt

required

models_prefixed_by_provider

List of models in format "provider:model"

openai:gpt-4o-mini

output_path

Full path for the output file

Generated based on input

output_dir

Directory for response files

input file's directory/responses

output_extension

File extension for output files

md

Examples:

# Simple example prompt_from_file2file_tool: "prompts/uv_script.md" # Complex example with specific model, output path and custom extension prompt_from_file2file_tool: "prompts/diagram.md" ["anthropic:claude-3-7-sonnet"] "prompts/responses/architecture_diagram.md"

Team Decision Making

Use multiple models as team members to generate different solutions, then have a decision maker model evaluate and choose the best approach.

Parameters:

Parameter

Description

Default Value

from_file

Path to the file containing the prompt

required

models_prefixed_by_provider

List of team member models

["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]

persona_dm_model

Model for making the decision

openai:gpt-4o-mini

output_path

Full path for the output document

Generated based on input

output_dir

Directory for response files

input file's directory/responses

output_extension

File extension for output files

md

persona_prompt

Custom decision maker prompt

Default template

Examples:

# Simple example persona_dm_tool: "prompts/decision.md" # Complex example with custom team and decision maker model persona_dm_tool: "prompts/decision.md" ["o:gpt-4.1", "a:claude-3-7-sonnet", "g:gemini-2.5-pro-preview-03-25"] persona_dm_model="o:o3" "prompts/responses/final_decision.md"

Business Analyst Persona

Generate detailed business analysis using a specialized Business Analyst persona, with optional team-based decision making.

Capabilities:

  • Creating detailed project briefs and requirement documents

  • Analyzing business needs and market opportunities

  • Defining MVP scope and feature prioritization

  • Identifying target audiences and user personas

Parameters:

Parameter

Description

Default Value

from_file

Path to the file containing business requirements

required

models_prefixed_by_provider

Models to use in format "provider:model"

openai:gpt-4o-mini

output_path

Full path for the output document

Generated based on input

output_dir

Directory for response files

input file's directory/responses

output_extension

File extension for output files

md

use_decision_maker

Whether to use team decision making

false

decision_maker_models

Models for team members if using decision maker

["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]

decision_maker_model

Model for final decision making

openai:gpt-4o-mini

Examples:

# Simple example persona_ba_tool: "prompts/concept.md" "prompts/responses/project-brief.md" # Complex example with team-based decision making persona_ba_tool: "prompts/concept.md" use_decision_maker=true decision_maker_model="o:04-mini" "prompts/responses/project-brief.md"

Product Manager Persona

Generate comprehensive product management plans using a specialized Product Manager persona, with optional team-based decision making.

Capabilities:

  • Creating detailed product plans with prioritized features and clear timelines

  • Developing product vision and strategy

  • Performing market and competitive analysis

  • Defining user stories and requirements

  • Managing cross-functional team collaboration

  • Implementing data-driven decision making

Parameters:

Parameter

Description

Default Value

from_file

Path to the file containing the product requirements

required

models_prefixed_by_provider

Models to use in format "provider:model"

openai:gpt-4o-mini

output_path

Full path for the output document

Generated based on input

output_dir

Directory for response files

input file's directory/responses

output_extension

File extension for output files

md

use_decision_maker

Whether to use team decision making

false

decision_maker_models

Models for team members if using decision maker

["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]

decision_maker_model

Model for final decision making

openai:gpt-4o-mini

pm_prompt

Custom Product Manager prompt template

Default template

decision_maker_prompt

Custom decision maker prompt template

Default template

Examples:

# Simple example persona_pm_tool: "prompts/responses/project-brief.md" "prompts/responses/project-prd.md" # Complex example with team-based decision making persona_pm_tool: "prompts/responses/project-brief.md" use_decision_maker=true decision_maker_model="o:gpt-4o-mini" "prompts/responses/project-prd.md"

Spec Writer Persona

Generate clear, developer-ready specification documents from PRDs, project briefs, or user requests using a specialized Spec Writer persona.

Capabilities:

  • Producing technical specifications from PRDs or project briefs

  • Defining step-by-step implementation instructions for developers and AI agents

  • Creating comprehensive specifications with architectural patterns and validation criteria

  • Defining tool behavior, CLI structure, directory layout, and testing plans

  • Using focused, reproducible examples to communicate architectural patterns

  • Ensuring each spec includes validation steps to verify implementation

Parameters:

Parameter

Description

Default Value

from_file

Path to the file containing requirements or PRD

required

models_prefixed_by_provider

Models to use in format "provider:model"

openai:gpt-4o-mini

output_path

Full path for the output document

Generated based on input

output_dir

Directory for response files

input file's directory/responses

output_extension

File extension for output files

md

use_decision_maker

Whether to use team decision making

false

decision_maker_models

Models for team members if using decision maker

["openai:gpt-4.1", "anthropic:claude-3-7-sonnet", "gemini:gemini-2.5-pro"]

decision_maker_model

Model for final decision making

openai:gpt-4o-mini

sw_prompt

Custom Spec Writer prompt template

Default template

decision_maker_prompt

Custom decision maker prompt template

Default template

Examples:

# Simple example - generate a specification from a PRD persona_sw_tool: "prompts/responses/project-prd.md" "prompts/responses/project-spec.md" # Complex example with team-based decision making persona_sw_tool: "prompts/responses/project-prd.md" use_decision_maker=true decision_maker_model=["o:gpt-4o-mini"] "prompts/responses/project-spec.md"
-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/danielscholl/agile-team-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server