Skip to main content
Glama

workflowy_uncomplete_node

Mark a WorkFlowy node as not completed to track incomplete tasks or items in your outline.

Instructions

Mark a WorkFlowy node as not completed

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
node_idYes

Implementation Reference

  • MCP tool handler function for workflowy_uncomplete_node. Registers the tool and implements the logic by calling the WorkFlowyClient.uncomplete_node method with rate limiting.
    @mcp.tool(name="workflowy_uncomplete_node", description="Mark a WorkFlowy node as not completed") async def uncomplete_node(node_id: str) -> WorkFlowyNode: """Mark a WorkFlowy node as not completed. Args: node_id: The ID of the node to uncomplete Returns: The updated WorkFlowy node """ client = get_client() if _rate_limiter: await _rate_limiter.acquire() try: node = await client.uncomplete_node(node_id) if _rate_limiter: _rate_limiter.on_success() return node except Exception as e: if _rate_limiter and hasattr(e, "__class__") and e.__class__.__name__ == "RateLimitError": _rate_limiter.on_rate_limit(getattr(e, "retry_after", None)) raise
  • Core API client implementation of uncomplete_node. Performs POST to /nodes/{node_id}/uncomplete, handles retries and rate limits, fetches and returns the updated node.
    async def uncomplete_node(self, node_id: str, max_retries: int = 10) -> WorkFlowyNode: """Mark a node as not completed with exponential backoff retry.""" import asyncio logger = _ClientLogger() retry_count = 0 base_delay = 1.0 while retry_count < max_retries: # Force delay at START of each iteration (rate limit protection) await asyncio.sleep(API_RATE_LIMIT_DELAY) try: response = await self.client.post(f"/nodes/{node_id}/uncomplete") data = await self._handle_response(response) # API returns {"status": "ok"} - fetch updated node if isinstance(data, dict) and data.get('status') == 'ok': get_response = await self.client.get(f"/nodes/{node_id}") node_data = await self._handle_response(get_response) return WorkFlowyNode(**node_data["node"]) else: # Fallback for unexpected format return WorkFlowyNode(**data) except RateLimitError as e: retry_count += 1 retry_after = getattr(e, 'retry_after', None) or (base_delay * (2 ** retry_count)) logger.warning( f"Rate limited on uncomplete_node. Retry after {retry_after}s. " f"Attempt {retry_count}/{max_retries}" ) if retry_count < max_retries: await asyncio.sleep(retry_after) else: raise except NetworkError as e: retry_count += 1 logger.warning( f"Network error on uncomplete_node: {e}. Retry {retry_count}/{max_retries}" ) if retry_count < max_retries: await asyncio.sleep(base_delay * (2 ** retry_count)) else: raise except httpx.TimeoutException as err: retry_count += 1 logger.warning( f"Timeout error: {err}. Retry {retry_count}/{max_retries}" ) if retry_count < max_retries: await asyncio.sleep(base_delay * (2 ** retry_count)) else: raise TimeoutError("uncomplete_node") from err raise NetworkError("uncomplete_node failed after maximum retries")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/daniel347x/workflowy-mcp-fixed'

If you have feedback or need assistance with the MCP directory API, please join our Discord server