Skip to main content
Glama
finalHackathon.py9.04 kB
import gradio as gr import pandas as pd import io import pickle import matplotlib.pyplot as plt import seaborn as sns from lazypredict.Supervised import LazyClassifier, LazyRegressor from sklearn.model_selection import train_test_split from ydata_profiling import ProfileReport import tempfile import requests import json from openai import OpenAI # Added for Nebius AI Studio LLM integration def load_data(file_input): """Loads CSV data from either a local file upload or a public URL.""" if file_input is None: return None, None try: if hasattr(file_input, 'name'): file_path = file_input.name with open(file_path, 'rb') as f: file_bytes = f.read() df = pd.read_csv(io.BytesIO(file_bytes)) elif isinstance(file_input, str) and file_input.startswith('http'): response = requests.get(file_input) response.raise_for_status() df = pd.read_csv(io.StringIO(response.text)) else: return None, None # Extract column names here column_names = ", ".join(df.columns.tolist()) return df, column_names except Exception as e: gr.Warning(f"Failed to load or parse data: {e}") return None, None def update_detected_columns_display(file_data, url_data): """ Detects and displays column names from the uploaded file or URL as soon as the input changes, before the main analysis button is pressed. """ data_source = file_data if file_data is not None else url_data if data_source is None: return "" df, column_names = load_data(data_source) if column_names: return column_names else: return "No columns detected or error loading file. Please check the file format." def analyze_and_model(df, target_column): """Internal function to perform EDA, model training, and visualization.""" profile = ProfileReport(df, title="EDA Report", minimal=True) with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as temp_html: profile.to_file(temp_html.name) profile_path = temp_html.name X = df.drop(columns=[target_column]) y = df[target_column] task = "classification" if y.nunique() <= 10 else "regression" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LazyClassifier(ignore_warnings=True, verbose=0) if task == "classification" else LazyRegressor(ignore_warnings=True, verbose=0) models, _ = model.fit(X_train, X_test, y_train, y_test) sort_metric = "Accuracy" if task == "classification" else "R-Squared" best_model_name = models.sort_values(by=sort_metric, ascending=False).index[0] # Corrected indexing best_model = model.models[best_model_name] with tempfile.NamedTemporaryFile(delete=False, suffix=".pkl") as temp_pkl: pickle.dump(best_model, temp_pkl) pickle_path = temp_pkl.name plt.figure(figsize=(10, 6)) plot_column = "Accuracy" if task == "classification" else "R-Squared" sns.barplot(x=models[plot_column].head(10), y=models.head(10).index) plt.title(f"Top 10 Models by {plot_column}") plt.tight_layout() with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_png: plt.savefig(temp_png.name) plot_path = temp_png.name plt.close() models_reset = models.reset_index().rename(columns={'index': 'Model'}) return profile, profile_path, task, models_reset, plot_path, pickle_path def run_pipeline(data_source, target_column, nebius_api_key): """ This single function drives the entire application. It's exposed as the primary tool for the MCP server. :param data_source: A local file path (from gr.File) or a URL (from gr.Textbox). :param target_column: The name of the target column for prediction. :param nebius_api_key: The API key for Nebius AI Studio. """ # --- 1. Input Validation --- if not data_source or not target_column: error_msg = "Error: Data source and target column must be provided." gr.Warning(error_msg) return None, error_msg, None, None, None, "Please provide all inputs.", "No columns loaded." gr.Info("Starting analysis...") # --- 2. Data Loading --- df, column_names = load_data(data_source) if df is None: return None, "Error: Could not load data.", None, None, None, None, "No columns loaded." if target_column not in df.columns: error_msg = f"Error: Target column '{target_column}' not found in the dataset. Available: {column_names}" gr.Warning(error_msg) return None, error_msg, None, None, None, None, column_names # --- 3. Analysis and Modeling --- profile, profile_path, task, models_df, plot_path, pickle_path = analyze_and_model(df, target_column) # --- 4. Explanation with Nebius AI Studio LLM --- best_model_name = models_df.iloc[0]['Model'] # Corrected indexing llm_explanation = "AI explanation is unavailable. Please provide a Nebius AI Studio API key to enable this feature." # Generic fallback [1] if nebius_api_key: try: client = OpenAI( base_url="https://api.studio.nebius.com/v1/", api_key=nebius_api_key ) # Craft a prompt for the LLM [2] prompt_text = f"Explain and Summarize the significance of the top performing model, '{best_model_name}', for a {task} task in a data analysis context. Keep the explanation concise and professional. Analyse the report: {profile}." # Make the LLM call [2, 3] response = client.chat.completions.create( model="meta-llama/Llama-3.3-70B-Instruct", messages=[ {"role": "system", "content": "You are a helpful AI assistant that explains data science concepts. "}, {"role": "user", "content": prompt_text} ], temperature=0.6, max_tokens=512, top_p=0.9, extra_body={ "top_k": 50 } ) message_content = response.to_json() data = json.loads(message_content) llm_explanation = data['choices'][0]['message']['content'] except Exception as e: gr.Warning(f"Failed to get AI explanation: {e}. Please check your API key or try again later.") llm_explanation = "An error occurred while fetching AI explanation. Please check your API key or try again later." gr.Info("Analysis complete!") gr.Info(f'Profile report saved to: {profile_path}') return profile_path, task, models_df, plot_path, pickle_path, llm_explanation, column_names # --- Gradio UI --- with gr.Blocks(title="AutoML Trainer", theme=gr.themes.Soft()) as demo: gr.Markdown("## 🤖 AutoML Trainer") with gr.Row(): with gr.Column(scale=1): file_input = gr.File(label="Upload Local CSV File") url_input = gr.Textbox(label="Or Enter Public CSV URL", placeholder="e.g., https://.../data.csv") target_column_input = gr.Textbox(label="Enter Target Column Name", placeholder="e.g., approved") nebius_api_key_input = gr.Textbox(label="Nebius AI Studio API Key (Optional)", type="password", placeholder="Enter your API key for AI explanations") run_button = gr.Button("Run Analysis & AutoML", variant="primary") with gr.Column(scale=2): column_names_output = gr.Textbox(label="Detected Columns", interactive=False, lines=2) # New Textbox for column names task_output = gr.Textbox(label="Detected Task", interactive=False) llm_output = gr.Markdown(label="AI Explanation") metrics_output = gr.Dataframe(label="Model Performance Metrics") with gr.Row(): vis_output = gr.Image(label="Top Models Comparison") with gr.Column(): eda_output = gr.File(label="Download Full EDA Report") model_output = gr.File(label="Download Best Model (.pkl)") def process_inputs(file_data, url_data, target, api_key): data_source = file_data if file_data is not None else url_data return run_pipeline(data_source, target, api_key) file_input.change( fn=update_detected_columns_display, inputs=[file_input, url_input], outputs=column_names_output ) url_input.change( fn=update_detected_columns_display, inputs=[file_input, url_input], outputs=column_names_output ) run_button.click( fn=process_inputs, inputs=[file_input, url_input, target_column_input, nebius_api_key_input], outputs=[eda_output, task_output, metrics_output, vis_output, model_output, llm_output, column_names_output] ) demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_api=True, inbrowser=True, mcp_server=True )

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/daniel-was-taken/MCP_Project'

If you have feedback or need assistance with the MCP directory API, please join our Discord server