Skip to main content
Glama
damian-pramparo

Enterprise Code Search MCP Server

get_embedding_provider_info

Retrieve details about the current AI embedding provider configured for semantic code search, including model information and capabilities.

Instructions

Get information about the current embedding provider

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • The core handler function implementing the 'get_embedding_provider_info' tool. It generates a markdown report on the current embedding provider (OpenAI or Ollama), including configuration details, API key status (for OpenAI), host/model (for Ollama), and connection test with available models list.
    async getEmbeddingProviderInfo() { let info = `# Embedding Provider Information\n\n`; info += `**Current Provider:** ${this.config.embedding_provider}\n\n`; if (this.config.embedding_provider === 'openai') { info += `## OpenAI Configuration\n`; info += `- **Model:** ${this.config.openai_model}\n`; info += `- **API Key:** ${this.config.openai_api_key ? 'Configured ✓' : 'Not configured ✗'}\n`; } else { info += `## Ollama Configuration\n`; info += `- **Host:** ${this.config.ollama_host}\n`; info += `- **Model:** ${this.config.ollama_model}\n`; try { const response = await fetch(`${this.config.ollama_host}/api/tags`); if (response.ok) { const data = await response.json(); const models = data.models?.map((m: any) => m.name) || []; info += `- **Connection:** ✓ Connected\n`; info += `- **Available Models:** ${models.join(', ') || 'None'}\n`; } else { info += `- **Connection:** ✗ Failed to connect\n`; } } catch (error) { info += `- **Connection:** ✗ Error connecting\n`; } } return { content: [ { type: "text", text: info } ] }; }
  • src/index.ts:95-102 (registration)
    Registration of the tool in the stdio MCP server (index.ts), including name, description, and empty input schema. Dispatched to this.getEmbeddingProviderInfo() in the CallToolRequestSchema handler.
    { name: "get_embedding_provider_info", description: "Get information about the current embedding provider", inputSchema: { type: "object", properties: {} } }
  • Registration of the tool in the HTTP MCP server (http-server.ts), including name, description, and empty input schema. Dispatched to this.getEmbeddingProviderInfo() in the callTool method.
    { name: "get_embedding_provider_info", description: "Get information about the current embedding provider", inputSchema: { type: "object", properties: {} } }
  • Input schema definition for the tool (empty object, no parameters required).
    inputSchema: { type: "object", properties: {} } }
  • Input schema definition for the tool (empty object, no parameters required).
    inputSchema: { type: "object", properties: {} }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/damian-pramparo/semantic-context-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server