#!/usr/bin/env node
/**
* CLI script for generating AI-powered documentation for community nodes.
*
* Usage:
* npm run generate:docs # Full generation (README + AI summary)
* npm run generate:docs:readme-only # Only fetch READMEs
* npm run generate:docs:summary-only # Only generate AI summaries
* npm run generate:docs:incremental # Skip nodes with existing data
*
* Environment variables:
* N8N_MCP_LLM_BASE_URL - LLM server URL (default: http://localhost:1234/v1)
* N8N_MCP_LLM_MODEL - LLM model name (default: qwen3-4b-thinking-2507)
* N8N_MCP_LLM_TIMEOUT - Request timeout in ms (default: 60000)
* N8N_MCP_DB_PATH - Database path (default: ./data/nodes.db)
*/
import path from 'path';
import { createDatabaseAdapter } from '../database/database-adapter';
import { NodeRepository } from '../database/node-repository';
import { CommunityNodeFetcher } from '../community/community-node-fetcher';
import {
DocumentationBatchProcessor,
BatchProcessorOptions,
} from '../community/documentation-batch-processor';
import { createDocumentationGenerator } from '../community/documentation-generator';
// Parse command line arguments
function parseArgs(): BatchProcessorOptions & { help?: boolean; stats?: boolean } {
const args = process.argv.slice(2);
const options: BatchProcessorOptions & { help?: boolean; stats?: boolean } = {};
for (const arg of args) {
if (arg === '--help' || arg === '-h') {
options.help = true;
} else if (arg === '--readme-only') {
options.readmeOnly = true;
} else if (arg === '--summary-only') {
options.summaryOnly = true;
} else if (arg === '--incremental' || arg === '-i') {
options.skipExistingReadme = true;
options.skipExistingSummary = true;
} else if (arg === '--skip-existing-readme') {
options.skipExistingReadme = true;
} else if (arg === '--skip-existing-summary') {
options.skipExistingSummary = true;
} else if (arg === '--stats') {
options.stats = true;
} else if (arg.startsWith('--limit=')) {
options.limit = parseInt(arg.split('=')[1], 10);
} else if (arg.startsWith('--readme-concurrency=')) {
options.readmeConcurrency = parseInt(arg.split('=')[1], 10);
} else if (arg.startsWith('--llm-concurrency=')) {
options.llmConcurrency = parseInt(arg.split('=')[1], 10);
}
}
return options;
}
function printHelp(): void {
console.log(`
============================================================
n8n-mcp Community Node Documentation Generator
============================================================
Usage: npm run generate:docs [options]
Options:
--help, -h Show this help message
--readme-only Only fetch READMEs from npm (skip AI generation)
--summary-only Only generate AI summaries (requires existing READMEs)
--incremental, -i Skip nodes that already have data
--skip-existing-readme Skip nodes with existing READMEs
--skip-existing-summary Skip nodes with existing AI summaries
--stats Show documentation statistics only
--limit=N Process only N nodes (for testing)
--readme-concurrency=N Parallel npm requests (default: 5)
--llm-concurrency=N Parallel LLM requests (default: 3)
Environment Variables:
N8N_MCP_LLM_BASE_URL LLM server URL (default: http://localhost:1234/v1)
N8N_MCP_LLM_MODEL LLM model name (default: qwen3-4b-thinking-2507)
N8N_MCP_LLM_TIMEOUT Request timeout in ms (default: 60000)
N8N_MCP_DB_PATH Database path (default: ./data/nodes.db)
Examples:
npm run generate:docs # Full generation
npm run generate:docs -- --readme-only # Only fetch READMEs
npm run generate:docs -- --incremental # Skip existing data
npm run generate:docs -- --limit=10 # Process 10 nodes (testing)
npm run generate:docs -- --stats # Show current statistics
`);
}
function createProgressBar(current: number, total: number, width: number = 50): string {
const percentage = total > 0 ? current / total : 0;
const filled = Math.round(width * percentage);
const empty = width - filled;
const bar = '='.repeat(filled) + ' '.repeat(empty);
const pct = Math.round(percentage * 100);
return `[${bar}] ${pct}% - ${current}/${total}`;
}
async function main(): Promise<void> {
const options = parseArgs();
if (options.help) {
printHelp();
process.exit(0);
}
console.log('============================================================');
console.log(' n8n-mcp Community Node Documentation Generator');
console.log('============================================================\n');
// Initialize database
const dbPath = process.env.N8N_MCP_DB_PATH || path.join(process.cwd(), 'data', 'nodes.db');
console.log(`Database: ${dbPath}`);
const db = await createDatabaseAdapter(dbPath);
const repository = new NodeRepository(db);
const fetcher = new CommunityNodeFetcher();
const generator = createDocumentationGenerator();
const processor = new DocumentationBatchProcessor(repository, fetcher, generator);
// Show current stats
const stats = processor.getStats();
console.log('\nCurrent Documentation Statistics:');
console.log(` Total community nodes: ${stats.total}`);
console.log(` With README: ${stats.withReadme} (${stats.needingReadme} need fetching)`);
console.log(` With AI summary: ${stats.withAISummary} (${stats.needingAISummary} need generation)`);
if (options.stats) {
console.log('\n============================================================');
db.close();
process.exit(0);
}
// Show configuration
console.log('\nConfiguration:');
console.log(` LLM Base URL: ${process.env.N8N_MCP_LLM_BASE_URL || 'http://localhost:1234/v1'}`);
console.log(` LLM Model: ${process.env.N8N_MCP_LLM_MODEL || 'qwen3-4b-thinking-2507'}`);
console.log(` README concurrency: ${options.readmeConcurrency || 5}`);
console.log(` LLM concurrency: ${options.llmConcurrency || 3}`);
if (options.limit) console.log(` Limit: ${options.limit} nodes`);
if (options.readmeOnly) console.log(` Mode: README only`);
if (options.summaryOnly) console.log(` Mode: Summary only`);
if (options.skipExistingReadme || options.skipExistingSummary) console.log(` Mode: Incremental`);
console.log('\n------------------------------------------------------------');
console.log('Processing...\n');
// Add progress callback
let lastMessage = '';
options.progressCallback = (message: string, current: number, total: number) => {
const bar = createProgressBar(current, total);
const fullMessage = `${bar} - ${message}`;
if (fullMessage !== lastMessage) {
process.stdout.write(`\r${fullMessage}`);
lastMessage = fullMessage;
}
};
// Run processing
const result = await processor.processAll(options);
// Clear progress line
process.stdout.write('\r' + ' '.repeat(80) + '\r');
// Show results
console.log('\n============================================================');
console.log(' Results');
console.log('============================================================');
if (!options.summaryOnly) {
console.log(`\nREADME Fetching:`);
console.log(` Fetched: ${result.readmesFetched}`);
console.log(` Failed: ${result.readmesFailed}`);
}
if (!options.readmeOnly) {
console.log(`\nAI Summary Generation:`);
console.log(` Generated: ${result.summariesGenerated}`);
console.log(` Failed: ${result.summariesFailed}`);
}
console.log(`\nSkipped: ${result.skipped}`);
console.log(`Duration: ${result.durationSeconds.toFixed(1)}s`);
if (result.errors.length > 0) {
console.log(`\nErrors (${result.errors.length}):`);
// Show first 10 errors
for (const error of result.errors.slice(0, 10)) {
console.log(` - ${error}`);
}
if (result.errors.length > 10) {
console.log(` ... and ${result.errors.length - 10} more`);
}
}
// Show final stats
const finalStats = processor.getStats();
console.log('\nFinal Documentation Statistics:');
console.log(` With README: ${finalStats.withReadme}/${finalStats.total}`);
console.log(` With AI summary: ${finalStats.withAISummary}/${finalStats.total}`);
console.log('\n============================================================\n');
db.close();
// Exit with error code if there were failures
if (result.readmesFailed > 0 || result.summariesFailed > 0) {
process.exit(1);
}
}
// Run main
main().catch((error) => {
console.error('Fatal error:', error);
process.exit(1);
});