MEMORY_TEMPLATE_UPDATE.mdβ’9.46 kB
# Template Update Process - Quick Reference
## Overview
The n8n-mcp project maintains a database of workflow templates from n8n.io. This guide explains how to update the template database incrementally without rebuilding from scratch.
## Current Database State
As of the last update:
- **2,598 templates** in database
- Templates from the last 12 months
- Latest template: September 12, 2025
## Quick Commands
### Incremental Update (Recommended)
```bash
# Build if needed
npm run build
# Fetch only NEW templates (5-10 minutes)
npm run fetch:templates:update
```
### Full Rebuild (Rare)
```bash
# Rebuild entire database from scratch (30-40 minutes)
npm run fetch:templates
```
## How It Works
### Incremental Update Mode (`--update`)
The incremental update is **smart and efficient**:
1. **Loads existing template IDs** from database (~2,598 templates)
2. **Fetches template list** from n8n.io API (all templates from last 12 months)
3. **Filters** to find only NEW templates not in database
4. **Fetches details** for new templates only (saves time and API calls)
5. **Saves** new templates to database (existing ones untouched)
6. **Rebuilds FTS5** search index for new templates
### Key Benefits
β
**Non-destructive**: All existing templates preserved
β
**Fast**: Only fetches new templates (5-10 min vs 30-40 min)
β
**API friendly**: Reduces load on n8n.io API
β
**Safe**: Preserves AI-generated metadata
β
**Smart**: Automatically skips duplicates
## Performance Comparison
| Mode | Templates Fetched | Time | Use Case |
|------|------------------|------|----------|
| **Update** | Only new (~50-200) | 5-10 min | Regular updates |
| **Rebuild** | All (~8000+) | 30-40 min | Initial setup or corruption |
## Command Options
### Basic Update
```bash
npm run fetch:templates:update
```
### Full Rebuild
```bash
npm run fetch:templates
```
### With Metadata Generation
```bash
# Update templates and generate AI metadata
npm run fetch:templates -- --update --generate-metadata
# Or just generate metadata for existing templates
npm run fetch:templates -- --metadata-only
```
### Help
```bash
npm run fetch:templates -- --help
```
## Update Frequency
Recommended update schedule:
- **Weekly**: Run incremental update to get latest templates
- **Monthly**: Review database statistics
- **As needed**: Rebuild only if database corruption suspected
## Template Filtering
The fetcher automatically filters templates:
- β
**Includes**: Templates from last 12 months
- β
**Includes**: Templates with >10 views
- β **Excludes**: Templates with β€10 views (too niche)
- β **Excludes**: Templates older than 12 months
## Workflow
### Regular Update Workflow
```bash
# 1. Check current state
sqlite3 data/nodes.db "SELECT COUNT(*) FROM templates"
# 2. Build project (if code changed)
npm run build
# 3. Run incremental update
npm run fetch:templates:update
# 4. Verify new templates added
sqlite3 data/nodes.db "SELECT COUNT(*) FROM templates"
```
### After n8n Dependency Update
When you update n8n dependencies, templates remain compatible:
```bash
# 1. Update n8n (from MEMORY_N8N_UPDATE.md)
npm run update:all
# 2. Fetch new templates incrementally
npm run fetch:templates:update
# 3. Check how many templates were added
sqlite3 data/nodes.db "SELECT COUNT(*) FROM templates"
# 4. Generate AI metadata for new templates (optional, requires OPENAI_API_KEY)
npm run fetch:templates -- --metadata-only
# 5. IMPORTANT: Sanitize templates before pushing database
npm run build
npm run sanitize:templates
```
Templates are independent of n8n version - they're just workflow JSON data.
**CRITICAL**: Always run `npm run sanitize:templates` before pushing the database to remove API tokens from template workflows.
**Note**: New templates fetched via `--update` mode will NOT have AI-generated metadata by default. You need to run `--metadata-only` separately to generate metadata for templates that don't have it yet.
## Troubleshooting
### No New Templates Found
This is normal! It means:
- All recent templates are already in your database
- n8n.io hasn't published many new templates recently
- Your database is up to date
```bash
π Update mode: 0 new templates to fetch (skipping 2598 existing)
β
All templates already have metadata
```
### API Rate Limiting
If you hit rate limits:
- The fetcher includes built-in delays (150ms between requests)
- Wait a few minutes and try again
- Use `--update` mode instead of full rebuild
### Database Corruption
If you suspect corruption:
```bash
# Full rebuild from scratch
npm run fetch:templates
# This will:
# - Drop and recreate templates table
# - Fetch all templates fresh
# - Rebuild search indexes
```
## Database Schema
Templates are stored with:
- Basic info (id, name, description, author, views, created_at)
- Node types used (JSON array)
- Complete workflow (gzip compressed, base64 encoded)
- AI-generated metadata (optional, requires OpenAI API key)
- FTS5 search index for fast text search
## Metadata Generation
Generate AI metadata for templates:
```bash
# Requires OPENAI_API_KEY in .env
export OPENAI_API_KEY="sk-..."
# Generate for templates without metadata (recommended after incremental update)
npm run fetch:templates -- --metadata-only
# Generate during template fetch (slower, but automatic)
npm run fetch:templates:update -- --generate-metadata
```
**Important**: Incremental updates (`--update`) do NOT generate metadata by default. After running `npm run fetch:templates:update`, you'll have new templates without metadata. Run `--metadata-only` separately to generate metadata for them.
### Check Metadata Coverage
```bash
# See how many templates have metadata
sqlite3 data/nodes.db "SELECT
COUNT(*) as total,
SUM(CASE WHEN metadata_json IS NOT NULL THEN 1 ELSE 0 END) as with_metadata,
SUM(CASE WHEN metadata_json IS NULL THEN 1 ELSE 0 END) as without_metadata
FROM templates"
# See recent templates without metadata
sqlite3 data/nodes.db "SELECT id, name, created_at
FROM templates
WHERE metadata_json IS NULL
ORDER BY created_at DESC
LIMIT 10"
```
Metadata includes:
- Categories
- Complexity level (simple/medium/complex)
- Use cases
- Estimated setup time
- Required services
- Key features
- Target audience
### Metadata Generation Troubleshooting
If metadata generation fails:
1. **Check error file**: Errors are saved to `temp/batch/batch_*_error.jsonl`
2. **Common issues**:
- `"Unsupported value: 'temperature'"` - Model doesn't support custom temperature
- `"Invalid request"` - Check OPENAI_API_KEY is valid
- Model availability issues
3. **Model**: Uses `gpt-5-mini-2025-08-07` by default
4. **Token limit**: 3000 tokens per request for detailed metadata
The system will automatically:
- Process error files and assign default metadata to failed templates
- Save error details for debugging
- Continue processing even if some templates fail
**Example error handling**:
```bash
# If you see: "No output file available for batch job"
# Check: temp/batch/batch_*_error.jsonl for error details
# The system now automatically processes errors and generates default metadata
```
## Environment Variables
Optional configuration:
```bash
# OpenAI for metadata generation
OPENAI_API_KEY=sk-...
OPENAI_MODEL=gpt-4o-mini # Default model
OPENAI_BATCH_SIZE=50 # Batch size for metadata generation
# Metadata generation limits
METADATA_LIMIT=100 # Max templates to process (0 = all)
```
## Statistics
After update, check stats:
```bash
# Template count
sqlite3 data/nodes.db "SELECT COUNT(*) FROM templates"
# Most recent template
sqlite3 data/nodes.db "SELECT MAX(created_at) FROM templates"
# Templates by view count
sqlite3 data/nodes.db "SELECT COUNT(*),
CASE
WHEN views < 50 THEN '<50'
WHEN views < 100 THEN '50-100'
WHEN views < 500 THEN '100-500'
ELSE '500+'
END as view_range
FROM templates GROUP BY view_range"
```
## Integration with n8n-mcp
Templates are available through MCP tools:
- `list_templates`: List all templates
- `get_template`: Get specific template with workflow
- `search_templates`: Search by keyword
- `list_node_templates`: Templates using specific nodes
- `get_templates_for_task`: Templates for common tasks
- `search_templates_by_metadata`: Advanced filtering
See `npm run test:templates` for usage examples.
## Time Estimates
Typical incremental update:
- Loading existing IDs: 1-2 seconds
- Fetching template list: 2-3 minutes
- Filtering new templates: instant
- Fetching details for 100 new templates: ~15 seconds (0.15s each)
- Saving and indexing: 5-10 seconds
- **Total: 3-5 minutes**
Full rebuild:
- Fetching 8000+ templates: 25-30 minutes
- Saving and indexing: 5-10 minutes
- **Total: 30-40 minutes**
## Best Practices
1. **Use incremental updates** for regular maintenance
2. **Rebuild only when necessary** (corruption, major changes)
3. **Generate metadata incrementally** to avoid OpenAI costs
4. **Monitor template count** to verify updates working
5. **Keep database backed up** before major operations
## Next Steps
After updating templates:
1. Test template search: `npm run test:templates`
2. Verify MCP tools work: Test in Claude Desktop
3. Check statistics in database
4. Commit changes if desired (database changes)
## Related Documentation
- `MEMORY_N8N_UPDATE.md` - Updating n8n dependencies
- `CLAUDE.md` - Project overview and architecture
- `README.md` - User documentation