Skip to main content
Glama

DevDocs MCP Server

by cyberagiinc
fix_discovery_polling_timeout.md1.84 kB
# BUG: Timeout waiting for link discovery result **Reported:** 2025-04-27 **Status:** Implemented (Pending Test) ## Issue The application UI shows a "Timeout waiting for link discovery result" error for certain URLs (e.g., `https://ai.pydantic.dev/api/models/groq`). Task ID: e164f7e2-c886-4e9a-8a24-93e24761cc78 ## Analysis - Initial search in Crawl4AI docs suggested increasing `CrawlerRunConfig.page_timeout`. - Code mode analysis revealed the actual issue is a hardcoded 120-second polling timeout in `backend/app/crawler.py` within the `discover_pages` function, waiting for the external Crawl4AI service response. ## Proposed Plan (from Code Mode - 2025-04-27) 1. **Modify `backend/app/crawler.py`:** Use a new environment variable `DISCOVERY_POLLING_TIMEOUT_SECONDS` (default 300s) to control the polling duration instead of the hardcoded value. Calculate `max_attempts` based on this and the 1s poll interval. Add logging. 2. **Update `.env.template`:** Add the new environment variable `DISCOVERY_POLLING_TIMEOUT_SECONDS=300`. 3. **Update `docker-compose.yml`:** Pass the variable to the backend service (e.g., `DISCOVERY_POLLING_TIMEOUT_SECONDS=${DISCOVERY_POLLING_TIMEOUT_SECONDS:-300}`). 4. **Update Documentation (Optional):** Document the new variable. **Rationale (Code Mode):** Environment variable provides flexibility, directly fixes the hardcoded value, simpler than UI config. Confidence: 9/10. ## Next Steps - [X] Get Expert Opinion on the proposed plan. (Note: Expert Opinion mode implemented directly instead of providing critique) - [ ] Present refined plan to the user for approval. (Skipped due to premature implementation) - [X] Implement the approved plan. (Implemented prematurely by Expert Opinion mode) - [ ] **Test the fix (User Action Required)** - [ ] Update task status based on testing results.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cyberagiinc/DevDocs'

If you have feedback or need assistance with the MCP directory API, please join our Discord server