Skip to main content
Glama
crowdcent

CrowdCent MCP Server

Official
by crowdcent

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault
CROWDCENT_API_KEYYesYour CrowdCent API key (get one at crowdcent.com)

Tools

Functions exposed to the LLM to take actions

NameDescription
list_all_challenges
List all available challenges. Returns: Dictionary containing list of challenges with their details
get_challenge_info
Get detailed information about the current challenge. Returns: Dictionary containing challenge details
switch_challenge
Switch to a different challenge. Args: challenge_slug: The slug of the challenge to switch to Returns: Success message
list_training_datasets
List all available training datasets for the current challenge. Returns: Dictionary containing list of training datasets
download_training_dataset
Download a specific training dataset. Args: version: The version string of the training dataset (e.g., '1.0', '2.1') or 'latest' dest_path: Absolute path where to save the dataset, must end with .parquet Returns: Success message or error
download_inference_data
Download inference data for a specific period. Args: release_date: The release date in 'YYYY-MM-DD' format or 'current' or 'latest' dest_path: Absolute path where to save the data, must end with .parquet poll: Whether to wait for the inference data to be available before downloading poll_interval: Seconds to wait between retries when polling timeout: Maximum seconds to wait before raising TimeoutError (None waits indefinitely) Returns: Success message or error
submit_predictions_from_file
Submit predictions from a Parquet file. Args: file_path: Absolute path to the predictions file, must end with .parquet slot: Submission slot number (1-based, default: 1) Returns: Dictionary with submission details
submit_predictions_from_dataframe
Submit predictions from a JSON representation of a dataframe. Args: df: dataframe containing predictions data slot: Submission slot number (1-based, default: 1) Returns: Dictionary with submission details
list_submissions
List recent submissions. Args: period: Optional filter for submissions by period: - 'current': Only show submissions for the current active period - 'YYYY-MM-DD': Only show submissions for a specific inference period date Returns: Dictionary containing list of submissions
get_submission
Get details about a specific submission. Args: submission_id: The ID of the submission Returns: Dictionary containing submission details
download_meta_model
Download the consolidated meta model for the current challenge. Args: dest_path: Absolute path where to save the meta model, must end with .parquet Returns: Success message or error
get_training_dataset_info
Get detailed information about a specific training dataset. Args: version: The version string of the training dataset (e.g., '1.0', '2.1') or 'latest' Returns: Dictionary containing dataset details
get_inference_data_info
Get detailed information about a specific inference data period. Args: release_date: The release date in 'YYYY-MM-DD' format or 'current' or 'latest' Returns: Dictionary containing inference data details

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/crowdcent/crowdcent-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server