Skip to main content
Glama

ishika_mcp

by crewAIInc
.cursorrules51.9 kB
# CrewAI Development Rules # Comprehensive best practices for developing with the CrewAI library, covering code organization, performance, security, testing, and common patterns. Based on actual CrewAI codebase analysis for accuracy. ## General Best Practices: - Leverage structured responses from LLM calls using Pydantic BaseModel for output validation. - Use the @CrewBase decorator pattern with @agent, @task, and @crew decorators for proper organization. - Regularly validate outputs from agents and tasks using built-in guardrails or custom validation. - Use UV for dependency management (CrewAI's standard) with pyproject.toml configuration. - Python version requirements: 3.10 to 3.14 (as per CrewAI's pyproject.toml). - Prefer declarative YAML configuration for agents and tasks over hardcoded definitions. ## Code Organization and Structure: - **Standard CrewAI Project Structure** (from CLI templates): - `project_name/` (Root directory) - `.env` (Environment variables - never commit API keys) - `pyproject.toml` (UV-based dependency management) - `knowledge/` (Knowledge base files) - `src/project_name/` - `__init__.py` - `main.py` (Entry point) - `crew.py` (Crew orchestration with @CrewBase decorator) - `config/` - `agents.yaml` (Agent definitions) - `tasks.yaml` (Task definitions) - `tools/` - `custom_tool.py` (Custom agent tools) - `__init__.py` - **File Naming Conventions**: - Use descriptive, lowercase names with underscores (e.g., `research_agent.py`). - Pydantic models: singular names (e.g., `article_summary.py` with class `ArticleSummary`). - Tests: mirror source file name with `_test` suffix (e.g., `crew_test.py`). - **CrewAI Class Architecture**: - Use @CrewBase decorator for main crew class. - Define agents with @agent decorator returning Agent instances. - Define tasks with @task decorator returning Task instances. - Define crew orchestration with @crew decorator returning Crew instance. - Access configuration via `self.agents_config` and `self.tasks_config`. ## Memory System Patterns: - **Memory Types** (all supported by CrewAI): - Short-term memory: ChromaDB with RAG for current context - Long-term memory: SQLite for task results across sessions - Entity memory: RAG to track entities (people, places, concepts) - External memory: Mem0 integration for advanced memory features - **Memory Configuration**: - Enable basic memory: `Crew(..., memory=True)` - Custom storage location: Set `CREWAI_STORAGE_DIR` environment variable - Memory is stored in platform-specific directories via `appdirs` by default - **Memory Usage**: - Memory is automatically managed by agents during task execution - Access via agent's memory attribute for custom implementations - Use metadata for categorizing and filtering memory entries ## Pydantic Integration Patterns: - **Structured Outputs**: - Use `output_pydantic` in Task definitions for structured results - Use `output_json` for JSON dictionary outputs - Cannot use both output_pydantic and output_json simultaneously - **Task Output Handling**: - TaskOutput contains raw, pydantic, and json_dict attributes - CrewOutput aggregates all task outputs with token usage metrics - Use model_validate_json for Pydantic model validation - **Custom Models**: - Inherit from BaseModel for all data structures - Use Field descriptions for LLM understanding - Implement model_validator for custom validation logic ## YAML Configuration Best Practices: - **agents.yaml Structure**: ```yaml agent_name: role: "Clear, specific role description" goal: "Specific goal statement" backstory: "Detailed background for context" # Optional: tools, llm, memory, etc. ``` - **tasks.yaml Structure**: ```yaml task_name: description: "Detailed task description with context" expected_output: "Clear output format specification" agent: agent_name # Reference to agent in agents.yaml # Optional: context, tools, output_file, etc. ``` - **Configuration Access**: - Use `self.agents_config['agent_name']` in @agent methods - Use `self.tasks_config['task_name']` in @task methods - Support for dynamic configuration via placeholders like {topic} ## Tools and Integration Patterns: - **Custom Tools**: - Inherit from BaseTool for custom tool implementation - Use @tool decorator for simple tool definitions - Implement proper error handling and input validation - **Tool Integration**: - Add tools to agents via tools parameter in Agent constructor - Tools are automatically inherited by tasks from their assigned agents - Use structured tool outputs for better LLM understanding ## Performance Considerations: - **LLM Optimization**: - Use task context to pass information between sequential tasks - Implement output caching to avoid redundant LLM calls - Configure appropriate LLM models per agent for cost/performance balance - **Memory Management**: - Be mindful of memory storage growth in long-running applications - Use score_threshold in memory search to filter relevant results - Implement periodic memory cleanup if needed - **Async Operations**: - Use execute_sync for synchronous task execution - Consider async patterns for I/O-bound operations in custom tools ## Security Best Practices: - **API Key Management**: - Always use .env files for API keys and sensitive configuration - Never commit API keys to version control - Use environment variables in production deployments - **Input Validation**: - Validate all inputs using Pydantic models where possible - Implement guardrails for task output validation - Use field_validator for custom validation logic - **Tool Security**: - Implement proper access controls in custom tools - Validate tool inputs and outputs - Follow principle of least privilege for tool permissions ## Testing Approaches: - **Unit Testing**: - Test individual agents, tasks, and tools in isolation - Use mocking for external dependencies (LLMs, APIs) - Test configuration loading and validation - **Integration Testing**: - Test crew execution end-to-end with realistic scenarios - Verify memory persistence across crew runs - Test tool integration and data flow between tasks - **Test Organization**: - Follow CrewAI's test structure: separate test files for each component - Use pytest fixtures for common test setup - Mock LLM responses for consistent, fast tests ## Common CrewAI Patterns and Anti-patterns: - **Recommended Patterns**: - Use sequential Process for dependent tasks, hierarchical for manager delegation - Implement task context for data flow between tasks - Use output_file for persistent task results - Leverage crew callbacks with @before_kickoff and @after_kickoff decorators - **Anti-patterns to Avoid**: - Don't hardcode agent configurations in Python code (use YAML) - Don't create circular task dependencies - Don't ignore task execution failures without proper error handling - Don't overload single agents with too many diverse tools - **Error Handling**: - Implement task-level guardrails for output validation - Use try-catch blocks in custom tools - Set appropriate max_retries for tasks prone to failures - Log errors with sufficient context for debugging ## Development Workflow: - **UV Commands**: - `crewai create crew <name>` - Create new crew project - `crewai install` - Install dependencies via UV - `crewai run` - Execute the crew - `uv sync` - Sync dependencies - `uv add <package>` - Add new dependencies - **Project Setup**: - Use CrewAI CLI for project scaffolding - Follow the standard directory structure - Configure agents and tasks in YAML before implementing crew logic - **Development Tools**: - Use UV for dependency management (CrewAI standard) - Configure pre-commit hooks for code quality - Use pytest for testing with CrewAI's testing patterns ## Deployment and Production: - **Environment Configuration**: - Set CREWAI_STORAGE_DIR for controlled memory storage location - Use proper logging configuration for production monitoring - Configure appropriate LLM providers and rate limits - **Containerization**: - Include knowledge and config directories in Docker images - Mount memory storage as persistent volumes if needed - Set proper environment variables for API keys and configuration - **Monitoring**: - Monitor token usage via CrewOutput.token_usage - Track task execution times and success rates - Implement health checks for long-running crew services ## CrewAI Flow Patterns and Best Practices ### Flow Architecture and Structure - **Use Flow class** for complex multi-step workflows that go beyond simple crew orchestration - **Combine Flows with Crews** to create sophisticated AI automation pipelines - **Leverage state management** to share data between flow methods - **Event-driven design** allows for dynamic and responsive workflow execution ### Flow Decorators and Control Flow - **@start()**: Mark entry points for flow execution (can have multiple start methods) - **@listen()**: Create method dependencies and execution chains - **@router()**: Implement conditional branching based on method outputs - **or_()** and **and_()**: Combine multiple trigger conditions for complex workflows ### Flow State Management Patterns ```python # Structured state with Pydantic (recommended for complex workflows) class WorkflowState(BaseModel): task_results: List[str] = [] current_step: str = "initialize" user_preferences: dict = {} completion_status: bool = False class MyFlow(Flow[WorkflowState]): @start() def initialize(self): self.state.current_step = "processing" # State automatically gets unique UUID in self.state.id # Unstructured state (good for simple workflows) class SimpleFlow(Flow): @start() def begin(self): self.state["counter"] = 0 self.state["results"] = [] # Auto-generated ID available in self.state["id"] ``` ### Flow Method Patterns ```python # Basic sequential flow @start() def step_one(self): return "data from step one" @listen(step_one) def step_two(self, data_from_step_one): return f"processed: {data_from_step_one}" # Parallel execution with convergence @start() def task_a(self): return "result_a" @start() def task_b(self): return "result_b" @listen(and_(task_a, task_b)) def combine_results(self): # Waits for both task_a AND task_b to complete return f"combined: {self.state}" # Conditional routing @router(step_one) def decision_point(self): if some_condition: return "success_path" return "failure_path" @listen("success_path") def handle_success(self): # Handle success case pass @listen("failure_path") def handle_failure(self): # Handle failure case pass # OR condition listening @listen(or_(task_a, task_b)) def process_any_result(self, result): # Triggers when EITHER task_a OR task_b completes return f"got result: {result}" ``` ### Flow Persistence Patterns ```python # Class-level persistence (all methods persisted) @persist(verbose=True) class PersistentFlow(Flow[MyState]): @start() def initialize(self): self.state.counter += 1 # Method-level persistence (selective) class SelectiveFlow(Flow): @persist @start() def critical_step(self): # Only this method's state is persisted self.state["important_data"] = "value" @start() def temporary_step(self): # This method's state is not persisted pass ``` ### Flow Execution Patterns ```python # Synchronous execution flow = MyFlow() result = flow.kickoff() final_state = flow.state # Asynchronous execution async def run_async_flow(): flow = MyFlow() result = await flow.kickoff_async() return result # Flow with input parameters flow = MyFlow() result = flow.kickoff(inputs={"user_id": "123", "task": "research"}) # Flow plotting and visualization flow.plot("workflow_diagram") # Generates HTML visualization ``` ### Advanced Flow Patterns ```python # Cyclic/Loop patterns class CyclicFlow(Flow): max_iterations = 5 current_iteration = 0 @start("loop") def process_iteration(self): if self.current_iteration >= self.max_iterations: return # Process current iteration self.current_iteration += 1 @router(process_iteration) def check_continue(self): if self.current_iteration < self.max_iterations: return "loop" # Continue cycling return "complete" @listen("complete") def finalize(self): # Final processing pass # Complex multi-router pattern @router(analyze_data) def primary_router(self): # Returns multiple possible paths based on analysis if self.state.confidence > 0.8: return "high_confidence" elif self.state.errors_found: return "error_handling" return "manual_review" @router("high_confidence") def secondary_router(self): # Further routing based on high confidence results return "automated_processing" # Exception handling in flows @start() def risky_operation(self): try: # Some operation that might fail result = dangerous_function() self.state["success"] = True return result except Exception as e: self.state["error"] = str(e) self.state["success"] = False return None @listen(risky_operation) def handle_result(self, result): if self.state.get("success", False): # Handle success case pass else: # Handle error case error = self.state.get("error") # Implement error recovery logic ``` ### Flow Integration with Crews ```python # Combining Flows with Crews for complex workflows class CrewOrchestrationFlow(Flow[WorkflowState]): @start() def research_phase(self): research_crew = ResearchCrew() result = research_crew.crew().kickoff(inputs={"topic": self.state.research_topic}) self.state.research_results = result.raw return result @listen(research_phase) def analysis_phase(self, research_results): analysis_crew = AnalysisCrew() result = analysis_crew.crew().kickoff(inputs={ "data": self.state.research_results, "focus": self.state.analysis_focus }) self.state.analysis_results = result.raw return result @router(analysis_phase) def decide_next_action(self): if self.state.analysis_results.confidence > 0.7: return "generate_report" return "additional_research" @listen("generate_report") def final_report(self): reporting_crew = ReportingCrew() return reporting_crew.crew().kickoff(inputs={ "research": self.state.research_results, "analysis": self.state.analysis_results }) ``` ### Flow Best Practices - **State Management**: Use structured state (Pydantic) for complex workflows, unstructured for simple ones - **Method Design**: Keep flow methods focused and single-purpose - **Error Handling**: Implement proper exception handling and error recovery paths - **State Persistence**: Use @persist for critical workflows that need recovery capability - **Flow Visualization**: Use flow.plot() to understand and debug complex workflow structures - **Async Support**: Leverage async methods for I/O-bound operations within flows - **Resource Management**: Be mindful of state size and memory usage in long-running flows - **Testing Flows**: Test individual methods and overall flow execution patterns - **Event Monitoring**: Use CrewAI event system to monitor flow execution and performance ### Flow Anti-patterns to Avoid - **Don't create overly complex flows** with too many branches and conditions - **Don't store large objects** in state that could cause memory issues - **Don't ignore error handling** in flow methods - **Don't create circular dependencies** between flow methods - **Don't mix synchronous and asynchronous** patterns inconsistently - **Don't overuse routers** when simple linear flow would suffice - **Don't forget to handle edge cases** in router logic ## CrewAI Version Compatibility: - Stay updated with CrewAI releases for new features and bug fixes - Test crew functionality when upgrading CrewAI versions - Use version constraints in pyproject.toml (e.g., "crewai[tools]>=0.140.0,<1.0.0") - Monitor deprecation warnings for future compatibility ## Code Examples and Implementation Patterns ### Complete Crew Implementation Example: ```python from crewai import Agent, Crew, Process, Task from crewai.project import CrewBase, agent, crew, task, before_kickoff, after_kickoff from crewai_tools import SerperDevTool, FileReadTool from crewai.agents.agent_builder.base_agent import BaseAgent from typing import List from pydantic import BaseModel, Field class ResearchOutput(BaseModel): title: str = Field(description="Research topic title") summary: str = Field(description="Executive summary") key_findings: List[str] = Field(description="Key research findings") recommendations: List[str] = Field(description="Actionable recommendations") sources: List[str] = Field(description="Source URLs and references") confidence_score: float = Field(description="Confidence in findings (0-1)") @CrewBase class ResearchCrew(): """Advanced research crew with structured outputs and validation""" agents: List[BaseAgent] tasks: List[Task] @before_kickoff def setup_environment(self): """Initialize environment before crew execution""" print("🚀 Setting up research environment...") # Validate API keys, create directories, etc. @after_kickoff def cleanup_and_report(self, output): """Handle post-execution tasks""" print(f"✅ Research completed. Generated {len(output.tasks_output)} task outputs") print(f"📊 Token usage: {output.token_usage}") @agent def researcher(self) -> Agent: return Agent( config=self.agents_config['researcher'], tools=[SerperDevTool()], verbose=True, memory=True, max_iter=15, max_execution_time=1800 ) @agent def analyst(self) -> Agent: return Agent( config=self.agents_config['analyst'], tools=[FileReadTool()], verbose=True, memory=True ) @task def research_task(self) -> Task: return Task( config=self.tasks_config['research_task'], agent=self.researcher(), output_pydantic=ResearchOutput ) @task def validation_task(self) -> Task: return Task( config=self.tasks_config['validation_task'], agent=self.analyst(), context=[self.research_task()], guardrail=self.validate_research_quality, max_retries=3 ) def validate_research_quality(self, output) -> tuple[bool, str]: """Custom guardrail to ensure research quality""" content = output.raw if len(content) < 500: return False, "Research output too brief. Need more detailed analysis." if not any(keyword in content.lower() for keyword in ['conclusion', 'finding', 'result']): return False, "Missing key analytical elements." return True, content @crew def crew(self) -> Crew: return Crew( agents=self.agents, tasks=self.tasks, process=Process.sequential, memory=True, verbose=True, max_rpm=100 ) ``` ### Custom Tool Implementation with Error Handling: ```python from crewai.tools import BaseTool from typing import Type, Optional, Any from pydantic import BaseModel, Field import requests import time from tenacity import retry, stop_after_attempt, wait_exponential class SearchInput(BaseModel): query: str = Field(description="Search query") max_results: int = Field(default=10, description="Maximum results to return") timeout: int = Field(default=30, description="Request timeout in seconds") class RobustSearchTool(BaseTool): name: str = "robust_search" description: str = "Perform web search with retry logic and error handling" args_schema: Type[BaseModel] = SearchInput def __init__(self, api_key: Optional[str] = None, **kwargs): super().__init__(**kwargs) self.api_key = api_key or os.getenv("SEARCH_API_KEY") self.rate_limit_delay = 1.0 self.last_request_time = 0 @retry( stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10) ) def _run(self, query: str, max_results: int = 10, timeout: int = 30) -> str: """Execute search with retry logic""" try: # Rate limiting time_since_last = time.time() - self.last_request_time if time_since_last < self.rate_limit_delay: time.sleep(self.rate_limit_delay - time_since_last) # Input validation if not query or len(query.strip()) == 0: return "Error: Empty search query provided" if len(query) > 500: return "Error: Search query too long (max 500 characters)" # Perform search results = self._perform_search(query, max_results, timeout) self.last_request_time = time.time() return self._format_results(results) except requests.exceptions.Timeout: return f"Search timed out after {timeout} seconds" except requests.exceptions.RequestException as e: return f"Search failed due to network error: {str(e)}" except Exception as e: return f"Unexpected error during search: {str(e)}" def _perform_search(self, query: str, max_results: int, timeout: int) -> List[dict]: """Implement actual search logic here""" # Your search API implementation pass def _format_results(self, results: List[dict]) -> str: """Format search results for LLM consumption""" if not results: return "No results found for the given query." formatted = "Search Results:\n\n" for i, result in enumerate(results[:10], 1): formatted += f"{i}. {result.get('title', 'No title')}\n" formatted += f" URL: {result.get('url', 'No URL')}\n" formatted += f" Summary: {result.get('snippet', 'No summary')}\n\n" return formatted ``` ### Advanced Memory Management: ```python import os from crewai.memory import ExternalMemory, ShortTermMemory, LongTermMemory from crewai.memory.storage.mem0_storage import Mem0Storage class AdvancedMemoryManager: """Enhanced memory management for CrewAI applications""" def __init__(self, crew, config: dict = None): self.crew = crew self.config = config or {} self.setup_memory_systems() def setup_memory_systems(self): """Configure multiple memory systems""" # Short-term memory for current session self.short_term = ShortTermMemory() # Long-term memory for cross-session persistence self.long_term = LongTermMemory() # External memory with Mem0 (if configured) if self.config.get('use_external_memory'): self.external = ExternalMemory.create_storage( crew=self.crew, embedder_config={ "provider": "mem0", "config": { "api_key": os.getenv("MEM0_API_KEY"), "user_id": self.config.get('user_id', 'default') } } ) def save_with_context(self, content: str, memory_type: str = "short_term", metadata: dict = None, agent: str = None): """Save content with enhanced metadata""" enhanced_metadata = { "timestamp": time.time(), "session_id": self.config.get('session_id'), "crew_type": self.crew.__class__.__name__, **(metadata or {}) } if memory_type == "short_term": self.short_term.save(content, enhanced_metadata, agent) elif memory_type == "long_term": self.long_term.save(content, enhanced_metadata, agent) elif memory_type == "external" and hasattr(self, 'external'): self.external.save(content, enhanced_metadata, agent) def search_across_memories(self, query: str, limit: int = 5) -> dict: """Search across all memory systems""" results = { "short_term": [], "long_term": [], "external": [] } # Search short-term memory results["short_term"] = self.short_term.search(query, limit=limit) # Search long-term memory results["long_term"] = self.long_term.search(query, limit=limit) # Search external memory (if available) if hasattr(self, 'external'): results["external"] = self.external.search(query, limit=limit) return results def cleanup_old_memories(self, days_threshold: int = 30): """Clean up old memories based on age""" cutoff_time = time.time() - (days_threshold * 24 * 60 * 60) # Implement cleanup logic based on timestamps in metadata # This would vary based on your specific storage implementation pass ``` ### Production Monitoring and Metrics: ```python import time import logging import json from datetime import datetime from typing import Dict, Any, List from dataclasses import dataclass, asdict @dataclass class TaskMetrics: task_name: str agent_name: str start_time: float end_time: float duration: float tokens_used: int success: bool error_message: Optional[str] = None memory_usage_mb: Optional[float] = None class CrewMonitor: """Comprehensive monitoring for CrewAI applications""" def __init__(self, crew_name: str, log_level: str = "INFO"): self.crew_name = crew_name self.metrics: List[TaskMetrics] = [] self.session_start = time.time() # Setup logging logging.basicConfig( level=getattr(logging, log_level), format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler(f'crew_{crew_name}_{datetime.now().strftime("%Y%m%d")}.log'), logging.StreamHandler() ] ) self.logger = logging.getLogger(f"CrewAI.{crew_name}") def start_task_monitoring(self, task_name: str, agent_name: str) -> dict: """Start monitoring a task execution""" context = { "task_name": task_name, "agent_name": agent_name, "start_time": time.time() } self.logger.info(f"Task started: {task_name} by {agent_name}") return context def end_task_monitoring(self, context: dict, success: bool = True, tokens_used: int = 0, error: str = None): """End monitoring and record metrics""" end_time = time.time() duration = end_time - context["start_time"] # Get memory usage (if psutil is available) memory_usage = None try: import psutil process = psutil.Process() memory_usage = process.memory_info().rss / 1024 / 1024 # MB except ImportError: pass metrics = TaskMetrics( task_name=context["task_name"], agent_name=context["agent_name"], start_time=context["start_time"], end_time=end_time, duration=duration, tokens_used=tokens_used, success=success, error_message=error, memory_usage_mb=memory_usage ) self.metrics.append(metrics) # Log the completion status = "SUCCESS" if success else "FAILED" self.logger.info(f"Task {status}: {context['task_name']} " f"(Duration: {duration:.2f}s, Tokens: {tokens_used})") if error: self.logger.error(f"Task error: {error}") def get_performance_summary(self) -> Dict[str, Any]: """Generate comprehensive performance summary""" if not self.metrics: return {"message": "No metrics recorded yet"} successful_tasks = [m for m in self.metrics if m.success] failed_tasks = [m for m in self.metrics if not m.success] total_duration = sum(m.duration for m in self.metrics) total_tokens = sum(m.tokens_used for m in self.metrics) avg_duration = total_duration / len(self.metrics) return { "crew_name": self.crew_name, "session_duration": time.time() - self.session_start, "total_tasks": len(self.metrics), "successful_tasks": len(successful_tasks), "failed_tasks": len(failed_tasks), "success_rate": len(successful_tasks) / len(self.metrics), "total_duration": total_duration, "average_task_duration": avg_duration, "total_tokens_used": total_tokens, "average_tokens_per_task": total_tokens / len(self.metrics) if self.metrics else 0, "slowest_task": max(self.metrics, key=lambda x: x.duration).task_name if self.metrics else None, "most_token_intensive": max(self.metrics, key=lambda x: x.tokens_used).task_name if self.metrics else None, "common_errors": self._get_common_errors() } def _get_common_errors(self) -> Dict[str, int]: """Get frequency of common errors""" error_counts = {} for metric in self.metrics: if metric.error_message: error_counts[metric.error_message] = error_counts.get(metric.error_message, 0) + 1 return dict(sorted(error_counts.items(), key=lambda x: x[1], reverse=True)) def export_metrics(self, filename: str = None) -> str: """Export metrics to JSON file""" if not filename: filename = f"crew_metrics_{self.crew_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json" export_data = { "summary": self.get_performance_summary(), "detailed_metrics": [asdict(m) for m in self.metrics] } with open(filename, 'w') as f: json.dump(export_data, f, indent=2, default=str) self.logger.info(f"Metrics exported to {filename}") return filename # Usage in crew implementation monitor = CrewMonitor("research_crew") @task def monitored_research_task(self) -> Task: def task_callback(task_output): # This would be called after task completion context = getattr(task_output, '_monitor_context', {}) if context: tokens = getattr(task_output, 'token_usage', {}).get('total', 0) monitor.end_task_monitoring(context, success=True, tokens_used=tokens) # Start monitoring would be called before task execution # This is a simplified example - in practice you'd integrate this into the task execution flow return Task( config=self.tasks_config['research_task'], agent=self.researcher(), callback=task_callback ) ``` ### Error Handling and Recovery Patterns: ```python from enum import Enum from typing import Optional, Callable, Any import traceback class ErrorSeverity(Enum): LOW = "low" MEDIUM = "medium" HIGH = "high" CRITICAL = "critical" class CrewError(Exception): """Base exception for CrewAI applications""" def __init__(self, message: str, severity: ErrorSeverity = ErrorSeverity.MEDIUM, context: dict = None): super().__init__(message) self.severity = severity self.context = context or {} self.timestamp = time.time() class TaskExecutionError(CrewError): """Raised when task execution fails""" pass class ValidationError(CrewError): """Raised when validation fails""" pass class ConfigurationError(CrewError): """Raised when configuration is invalid""" pass class ErrorHandler: """Centralized error handling for CrewAI applications""" def __init__(self, crew_name: str): self.crew_name = crew_name self.error_log: List[CrewError] = [] self.recovery_strategies: Dict[type, Callable] = {} def register_recovery_strategy(self, error_type: type, strategy: Callable): """Register a recovery strategy for specific error types""" self.recovery_strategies[error_type] = strategy def handle_error(self, error: Exception, context: dict = None) -> Any: """Handle errors with appropriate recovery strategies""" # Convert to CrewError if needed if not isinstance(error, CrewError): crew_error = CrewError( message=str(error), severity=ErrorSeverity.MEDIUM, context=context or {} ) else: crew_error = error # Log the error self.error_log.append(crew_error) self._log_error(crew_error) # Apply recovery strategy if available error_type = type(error) if error_type in self.recovery_strategies: try: return self.recovery_strategies[error_type](error, context) except Exception as recovery_error: self._log_error(CrewError( f"Recovery strategy failed: {str(recovery_error)}", ErrorSeverity.HIGH, {"original_error": str(error), "recovery_error": str(recovery_error)} )) # If critical, re-raise if crew_error.severity == ErrorSeverity.CRITICAL: raise crew_error return None def _log_error(self, error: CrewError): """Log error with appropriate level based on severity""" logger = logging.getLogger(f"CrewAI.{self.crew_name}.ErrorHandler") error_msg = f"[{error.severity.value.upper()}] {error}" if error.context: error_msg += f" | Context: {error.context}" if error.severity in [ErrorSeverity.HIGH, ErrorSeverity.CRITICAL]: logger.error(error_msg) logger.error(f"Stack trace: {traceback.format_exc()}") elif error.severity == ErrorSeverity.MEDIUM: logger.warning(error_msg) else: logger.info(error_msg) def get_error_summary(self) -> Dict[str, Any]: """Get summary of errors encountered""" if not self.error_log: return {"total_errors": 0} severity_counts = {} for error in self.error_log: severity_counts[error.severity.value] = severity_counts.get(error.severity.value, 0) + 1 return { "total_errors": len(self.error_log), "severity_breakdown": severity_counts, "recent_errors": [str(e) for e in self.error_log[-5:]], # Last 5 errors "most_recent_error": str(self.error_log[-1]) if self.error_log else None } # Example usage in crew error_handler = ErrorHandler("research_crew") # Register recovery strategies def retry_with_simpler_model(error, context): """Recovery strategy: retry with a simpler model""" if "rate limit" in str(error).lower(): time.sleep(60) # Wait and retry return "RETRY" elif "model overloaded" in str(error).lower(): # Switch to simpler model and retry return "RETRY_WITH_SIMPLE_MODEL" return None error_handler.register_recovery_strategy(TaskExecutionError, retry_with_simpler_model) @task def robust_task(self) -> Task: def execute_with_error_handling(task_func): def wrapper(*args, **kwargs): try: return task_func(*args, **kwargs) except Exception as e: result = error_handler.handle_error(e, {"task": "research_task"}) if result == "RETRY": # Implement retry logic pass elif result == "RETRY_WITH_SIMPLE_MODEL": # Switch model and retry pass else: # Use fallback response return "Task failed, using fallback response" return wrapper return Task( config=self.tasks_config['research_task'], agent=self.researcher() ) ``` ### Environment and Configuration Management: ```python import os from enum import Enum from typing import Optional, Dict, Any from pydantic import BaseSettings, Field, validator class Environment(str, Enum): DEVELOPMENT = "development" TESTING = "testing" STAGING = "staging" PRODUCTION = "production" class CrewAISettings(BaseSettings): """Comprehensive settings management for CrewAI applications""" # Environment environment: Environment = Field(default=Environment.DEVELOPMENT) debug: bool = Field(default=True) # API Keys (loaded from environment) openai_api_key: Optional[str] = Field(default=None, env="OPENAI_API_KEY") anthropic_api_key: Optional[str] = Field(default=None, env="ANTHROPIC_API_KEY") serper_api_key: Optional[str] = Field(default=None, env="SERPER_API_KEY") mem0_api_key: Optional[str] = Field(default=None, env="MEM0_API_KEY") # CrewAI Configuration crew_max_rpm: int = Field(default=100) crew_max_execution_time: int = Field(default=3600) # 1 hour default_llm_model: str = Field(default="gpt-4") fallback_llm_model: str = Field(default="gpt-3.5-turbo") # Memory and Storage crewai_storage_dir: str = Field(default="./storage", env="CREWAI_STORAGE_DIR") memory_enabled: bool = Field(default=True) memory_cleanup_interval: int = Field(default=86400) # 24 hours in seconds # Performance enable_caching: bool = Field(default=True) max_retries: int = Field(default=3) retry_delay: float = Field(default=1.0) # Monitoring enable_monitoring: bool = Field(default=True) log_level: str = Field(default="INFO") metrics_export_interval: int = Field(default=3600) # 1 hour # Security input_sanitization: bool = Field(default=True) max_input_length: int = Field(default=10000) allowed_file_types: list = Field(default=["txt", "md", "pdf", "docx"]) @validator('environment', pre=True) def set_debug_based_on_env(cls, v): return v @validator('debug') def set_debug_from_env(cls, v, values): env = values.get('environment') if env == Environment.PRODUCTION: return False return v @validator('openai_api_key') def validate_openai_key(cls, v): if not v: raise ValueError("OPENAI_API_KEY is required") if not v.startswith('sk-'): raise ValueError("Invalid OpenAI API key format") return v @property def is_production(self) -> bool: return self.environment == Environment.PRODUCTION @property def is_development(self) -> bool: return self.environment == Environment.DEVELOPMENT def get_llm_config(self) -> Dict[str, Any]: """Get LLM configuration based on environment""" config = { "model": self.default_llm_model, "temperature": 0.1 if self.is_production else 0.3, "max_tokens": 4000 if self.is_production else 2000, "timeout": 60 } if self.is_development: config["model"] = self.fallback_llm_model return config def get_memory_config(self) -> Dict[str, Any]: """Get memory configuration""" return { "enabled": self.memory_enabled, "storage_dir": self.crewai_storage_dir, "cleanup_interval": self.memory_cleanup_interval, "provider": "mem0" if self.mem0_api_key and self.is_production else "local" } class Config: env_file = ".env" env_file_encoding = 'utf-8' case_sensitive = False # Global settings instance settings = CrewAISettings() # Usage in crew @CrewBase class ConfigurableCrew(): """Crew that uses centralized configuration""" def __init__(self): self.settings = settings self.validate_configuration() def validate_configuration(self): """Validate configuration before crew execution""" required_keys = [self.settings.openai_api_key] if not all(required_keys): raise ConfigurationError("Missing required API keys") if not os.path.exists(self.settings.crewai_storage_dir): os.makedirs(self.settings.crewai_storage_dir, exist_ok=True) @agent def adaptive_agent(self) -> Agent: """Agent that adapts to configuration""" llm_config = self.settings.get_llm_config() return Agent( config=self.agents_config['researcher'], llm=llm_config["model"], max_iter=15 if self.settings.is_production else 10, max_execution_time=self.settings.crew_max_execution_time, verbose=self.settings.debug ) ``` ### Comprehensive Testing Framework: ```python import pytest import asyncio from unittest.mock import Mock, patch, MagicMock from crewai import Agent, Task, Crew from crewai.tasks.task_output import TaskOutput class CrewAITestFramework: """Comprehensive testing framework for CrewAI applications""" @staticmethod def create_mock_agent(role: str = "test_agent", tools: list = None) -> Mock: """Create a mock agent for testing""" mock_agent = Mock(spec=Agent) mock_agent.role = role mock_agent.goal = f"Test goal for {role}" mock_agent.backstory = f"Test backstory for {role}" mock_agent.tools = tools or [] mock_agent.llm = "gpt-3.5-turbo" mock_agent.verbose = False return mock_agent @staticmethod def create_mock_task_output(content: str, success: bool = True, tokens: int = 100) -> TaskOutput: """Create a mock task output for testing""" return TaskOutput( description="Test task", raw=content, agent="test_agent", pydantic=None, json_dict=None ) @staticmethod def create_test_crew(agents: list = None, tasks: list = None) -> Crew: """Create a test crew with mock components""" test_agents = agents or [CrewAITestFramework.create_mock_agent()] test_tasks = tasks or [] return Crew( agents=test_agents, tasks=test_tasks, verbose=False ) # Example test cases class TestResearchCrew: """Test cases for research crew functionality""" def setup_method(self): """Setup test environment""" self.framework = CrewAITestFramework() self.mock_serper = Mock() @patch('crewai_tools.SerperDevTool') def test_agent_creation(self, mock_serper_tool): """Test agent creation with proper configuration""" mock_serper_tool.return_value = self.mock_serper crew = ResearchCrew() researcher = crew.researcher() assert researcher.role == "Senior Research Analyst" assert len(researcher.tools) > 0 assert researcher.verbose is True def test_task_validation(self): """Test task validation logic""" crew = ResearchCrew() # Test valid output valid_output = self.framework.create_mock_task_output( "This is a comprehensive research summary with conclusions and findings." ) is_valid, message = crew.validate_research_quality(valid_output) assert is_valid is True # Test invalid output (too short) invalid_output = self.framework.create_mock_task_output("Too short") is_valid, message = crew.validate_research_quality(invalid_output) assert is_valid is False assert "brief" in message.lower() @patch('requests.get') def test_tool_error_handling(self, mock_requests): """Test tool error handling and recovery""" # Simulate network error mock_requests.side_effect = requests.exceptions.RequestException("Network error") tool = RobustSearchTool() result = tool._run("test query") assert "network error" in result.lower() assert "failed" in result.lower() @pytest.mark.asyncio async def test_crew_execution_flow(self): """Test complete crew execution with mocked dependencies""" with patch.object(Agent, 'execute_task') as mock_execute: mock_execute.return_value = self.framework.create_mock_task_output( "Research completed successfully with findings and recommendations." ) crew = ResearchCrew() result = crew.crew().kickoff(inputs={"topic": "AI testing"}) assert result is not None assert "successfully" in result.raw.lower() def test_memory_integration(self): """Test memory system integration""" crew = ResearchCrew() memory_manager = AdvancedMemoryManager(crew) # Test saving to memory test_content = "Important research finding about AI" memory_manager.save_with_context( content=test_content, memory_type="short_term", metadata={"importance": "high"}, agent="researcher" ) # Test searching memory results = memory_manager.search_across_memories("AI research") assert "short_term" in results def test_error_handling_workflow(self): """Test error handling and recovery mechanisms""" error_handler = ErrorHandler("test_crew") # Test error registration and handling test_error = TaskExecutionError("Test task failed", ErrorSeverity.MEDIUM) result = error_handler.handle_error(test_error) assert len(error_handler.error_log) == 1 assert error_handler.error_log[0].severity == ErrorSeverity.MEDIUM def test_configuration_validation(self): """Test configuration validation""" # Test with missing API key with patch.dict(os.environ, {}, clear=True): with pytest.raises(ValueError): settings = CrewAISettings() # Test with valid configuration with patch.dict(os.environ, {"OPENAI_API_KEY": "sk-test-key"}): settings = CrewAISettings() assert settings.openai_api_key == "sk-test-key" @pytest.mark.integration def test_end_to_end_workflow(self): """Integration test for complete workflow""" # This would test the entire crew workflow with real components # Use sparingly and with proper API key management pass # Performance testing class TestCrewPerformance: """Performance tests for CrewAI applications""" def test_memory_usage(self): """Test memory usage during crew execution""" import psutil import gc process = psutil.Process() initial_memory = process.memory_info().rss # Create and run crew multiple times for i in range(10): crew = ResearchCrew() # Simulate crew execution del crew gc.collect() final_memory = process.memory_info().rss memory_increase = final_memory - initial_memory # Assert memory increase is reasonable (less than 100MB) assert memory_increase < 100 * 1024 * 1024 def test_concurrent_execution(self): """Test concurrent crew execution""" import concurrent.futures def run_crew(crew_id): crew = ResearchCrew() # Simulate execution return f"crew_{crew_id}_completed" with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor: futures = [executor.submit(run_crew, i) for i in range(5)] results = [future.result() for future in futures] assert len(results) == 5 assert all("completed" in result for result in results) # Run tests with coverage # pytest --cov=src --cov-report=html --cov-report=term tests/ ``` ## Troubleshooting Common Issues ### Memory and Performance Issues: - **Large memory usage**: Implement memory cleanup, use score thresholds, monitor ChromaDB size - **Slow LLM responses**: Optimize prompts, use appropriate model sizes, implement caching - **High token costs**: Implement output caching, use context efficiently, set token limits - **Memory leaks**: Properly dispose of crew instances, monitor memory usage, use garbage collection ### Configuration and Setup Issues: - **YAML parsing errors**: Validate YAML syntax, check indentation, use YAML linters - **Missing environment variables**: Use .env.example, validate at startup, provide clear error messages - **Tool import failures**: Ensure proper tool installation, check import paths, verify dependencies - **API key issues**: Validate key format, check permissions, implement key rotation ### Storage and Persistence Issues: - **Permission errors**: Check CREWAI_STORAGE_DIR permissions, ensure write access - **Database locks**: Ensure single crew instance access, implement proper connection handling - **Storage growth**: Implement cleanup strategies, monitor disk usage, archive old data - **ChromaDB issues**: Check vector database health, validate embeddings, handle corrupted indices ## Local Development and Testing ### Development Best Practices: - Validate all API keys and credentials in .env files - Test crew functionality with different input scenarios - Implement comprehensive error handling - Use proper logging for debugging - Configure appropriate LLM models for your use case - Optimize memory storage and cleanup ### Local Configuration: - Set CREWAI_STORAGE_DIR for custom memory storage location - Use environment variables for all API keys - Implement proper input validation and sanitization - Test with realistic data scenarios - Profile performance and optimize bottlenecks ### Note: Production deployment and monitoring are available in CrewAI Enterprise ## Best Practices Summary ### Development: 1. Always use .env files for sensitive configuration 2. Implement comprehensive error handling and logging 3. Use structured outputs with Pydantic for reliability 4. Test crew functionality with different input scenarios 5. Follow CrewAI patterns and conventions consistently 6. Use UV for dependency management as per CrewAI standards 7. Implement proper validation for all inputs and outputs 8. Optimize performance for your specific use cases ### Security: 1. Never commit API keys or sensitive data to version control 2. Implement input validation and sanitization 3. Use proper authentication and authorization 4. Follow principle of least privilege for tool access 5. Implement rate limiting and abuse prevention 6. Monitor for security threats and anomalies 7. Keep dependencies updated and secure 8. Implement audit logging for sensitive operations ### Performance: 1. Optimize LLM calls and implement caching where appropriate 2. Use appropriate model sizes for different tasks 3. Implement efficient memory management and cleanup 4. Monitor token usage and implement cost controls 5. Use async patterns for I/O-bound operations 6. Implement proper connection pooling and resource management 7. Profile and optimize critical paths 8. Plan for horizontal scaling when needed

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/crewAIInc/crewAI'

If you have feedback or need assistance with the MCP directory API, please join our Discord server