kjlahsdjkashdjhkasdkajshd

Integrations

  • Enables an automated MLOps pipeline for Stable Diffusion model fine-tuning using multiple Google Cloud services, including Vertex AI, Cloud Storage, Cloud Build, PubSub, Firestore, Cloud Run, and Cloud Functions.

  • Handles image storage for training data, maintains predefined bucket paths for uploads, and stores compiled pipeline artifacts for Stable Diffusion fine-tuning jobs.

  • Used to create notebooks that outline pipeline workflows and components for Stable Diffusion model fine-tuning on Vertex AI.

デザイナー向けSD

Vertex AI を使用して、カスタム安定拡散モデルのトリガー、実行、微調整、トレーニング、デプロイを管理するための完全に自動化されたワークフロー

説明

Sd-aa-S は、Google Cloud Storage、Cloud Build、Cloud Pub/Sub、Firestore、Cloud Run、Cloud Functions、Vertex AI などの GCP コンポーネントを使用して、GCP 上で安定拡散のファインチューニングジョブをトリガー、管理、追跡するための完全自動化された MLOps パイプラインです。Dreambooth をはじめとする様々な手法を用いて安定拡散をチューニングするための ML ワークフローを簡素化することを目指しています。Lora、ControlNet などのサポートも近日中に開始予定です。このプロジェクトは、ML/データエンジニア、データサイエンティスト、そして大規模な安定拡散のファインチューニングプラットフォームの構築に関心を持つ、あるいは構築を目指しているすべての方を対象としています。

3つの部分

1. アプリ部分

1. Set up your Cloud Environment 2. Create a backend service for handling uploads to a GCS bucket - Receive images from clients and store them under a predefined GCS bucket path - Track the status of individual uploads in a Firestore collection - Track the status of the overall upload job in a separate Firestore collection - Once the job is compelted, publish the jobID as the message on a predefined PubSub topic 3. Deploy this backend service as a Cloud Run endpoint using Cloud build 4. Create a frontend portal to upload images using ReactJs 5. Deploy the frontend service on Cloud Run

2. Vertex AIの部分

1. Set up your Cloud Environment 2. Create a new custom container artifact for running the pipeline components 3. Create a new custom container artifact for running the training job itself 4. Create a Jupyter notebook outlining the Pipeline flow & components 5. Compile a YAML file from a Vertex AI workbench and store the precompiled YAML file under a GCS bucket path

3. 配管部分

1. Set up your Cloud Environment 2. Create a cloud function that gets triggered every time the jobID is published on a predefinied topic (from 1st part) 3. Within the cloud function, the python code subscribes to the topic and triggers a Vertex AI pipeline job using the precomiled YAML file (from 2nd part) 4. The pipeline jobs finetunes the stable diffusion model using Dreambooth, uploads the new custom model to Model registy & deploys an endpoint 5. The job also updates Firestore with the status of the pipeline job from start to end
-
security - not tested
F
license - not found
-
quality - not tested

kjlahsdjkashd

  1. Description
    1. Three Parts
      1. 1. The App part
        1. 2. The Vertex AI part
          1. 3. The Plumbing part
            ID: d30pjs03s9