# PROJECT SUMMARY
## Bi-Temporal Knowledge Graph MCP Server with Dynamic Tool Generator
**Version:** 1.0.0
**Created:** December 2024
**License:** MIT
---
## π¦ Package Contents
This package contains a complete, production-ready implementation of a Bi-Temporal Knowledge Graph MCP Server with Dynamic Automation Tool Generator.
### Core Application Files (3)
1. **memory.py** (33KB)
- Bi-temporal Graphiti memory implementation
- FalkorDB driver with connection pooling
- Session store with TTL management
- OpenAI entity extractor
- Smart conflict resolution
- Background cleanup manager
2. **tools.py** (5.5KB)
- Dynamic tool container
- Utility functions for webhook execution
- Single and parallel webhook helpers
- Auto-generated tools appended here at runtime
3. **main.py** (31KB)
- FastMCP server orchestrator
- Core memory tools registration
- PostgreSQL database interface
- Tool code generator (deterministic)
- Dynamic tool loader
- Lifecycle management (startup/shutdown)
### Documentation Files (4)
4. **README.md** (16KB)
- Comprehensive project documentation
- Architecture overview
- Database schemas
- Usage guide with examples
- API reference
- Advanced configuration
5. **QUICKSTART.md** (5KB)
- 5-minute setup guide
- Step-by-step installation
- Quick examples
- Troubleshooting
6. **DEPLOYMENT.md** (9KB)
- Platform-specific deployment guides
- Replit Autoscale
- Railway, Render, Fly.io
- Docker Compose
- Manual/VPS deployment
- Production checklist
7. **LICENSE** (1KB)
- MIT License
- Open source, commercial use allowed
### Configuration Files (4)
8. **.env.example** (600B)
- Environment variables template
- All configuration options documented
- Easy copy-paste setup
9. **.gitignore** (250B)
- Git ignore patterns
- Python, IDE, OS files
- Sensitive data protection
10. **requirements.txt** (512B)
- Python dependencies
- Version specifications
- Production-ready
11. **docker-compose.yml** (2.5KB)
- Complete stack definition
- FalkorDB + PostgreSQL + MCP Server
- Health checks included
- Volume management
### Deployment Files (2)
12. **Dockerfile** (1KB)
- Production-ready image
- Multi-stage optimization
- Non-root user
- Health checks
13. **seed_db.py** (7.5KB)
- Database seeding script
- Example webhook configurations
- Template creation
- Easy testing setup
### Example Files (1)
14. **examples.py** (14KB)
- 8 comprehensive scenarios
- Interactive demonstrations
- Best practices showcase
- Testing templates
---
## π― Key Features Delivered
### Bi-Temporal Memory System
β
Full temporal tracking (created_at, valid_at, invalid_at, expired_at)
β
Smart conflict resolution for location/employment changes
β
Session-aware episodic memory
β
Automatic fact invalidation
β
TTL-based session management (30 min default)
β
Memory-bounded session store (configurable limits)
β
Idle connection management
### AI-Powered Features
β
OpenAI entity extraction from natural language
β
Automatic relationship discovery
β
Configurable extraction prompts
β
Graceful degradation without OpenAI
### Dynamic Tool Generation
β
Database-driven tool configuration (PostgreSQL)
β
Single webhook template implementation
β
Multi-webhook parallel execution template
β
Deterministic code generation
β
Sanitized function names
β
Auto-generated docstrings
β
Hot-reload capability
### Production-Ready Architecture
β
FastMCP server with SSE transport
β
FalkorDB knowledge graph backend
β
PostgreSQL webhook configuration storage
β
Thread-safe session management
β
Background cleanup tasks
β
Comprehensive error handling
β
Resource management for Autoscale
β
Docker & Docker Compose support
---
## π Quick Start
### Minimum Setup (3 steps)
```bash
# 1. Install dependencies
pip install -r requirements.txt
# 2. Configure (minimum: just FalkorDB)
cp .env.example .env
# Edit: FALKORDB_HOST=localhost
# 3. Run
python main.py
```
### Full Setup (Docker Compose)
```bash
# One command starts everything
docker-compose up -d
# Includes: FalkorDB + PostgreSQL + MCP Server
```
### With Tool Generation
```bash
# 1. Configure PostgreSQL in .env
# 2. Seed example webhooks
python seed_db.py
# 3. Start server
python main.py
# 4. Generate tools (via MCP)
generate_tool_from_db("demo_user", "Slack Notification")
```
---
## π Technical Specifications
### System Requirements
- Python 3.9 or higher
- FalkorDB (or Redis with FalkorDB module)
- PostgreSQL 12+ (optional, for tool generation)
- OpenAI API key (optional, for entity extraction)
### Performance Characteristics
- **Memory Usage**: Bounded by MAX_SESSIONS (default: 1000)
- **Session TTL**: 30 minutes (configurable)
- **Cleanup Interval**: 5 minutes (configurable)
- **Connection Timeout**: 10 minutes idle (configurable)
- **Parallel Webhooks**: Async execution with asyncio.gather
- **Entity Extraction**: ~1-2s per message with OpenAI
### Scalability
- Horizontal scaling via group_id partitioning
- Stateless design (session store can be externalized)
- Connection pooling for database efficiency
- Automatic resource cleanup
- Designed for Replit Autoscale
---
## ποΈ Architecture Overview
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β FastMCP Server β
β (main.py) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β β
β ββββββββββββββββββ ββββββββββββββββββββ β
β β Memory Tools β β Dynamic Tools β β
β β (memory.py) β β (tools.py) β β
β ββββββββββ¬ββββββββ ββββββββββ¬ββββββββββ β
β β β β
β βΌ βΌ β
β βββββββββββββββββββββββββββββββββββββββββββββββ β
β β Tool Code Generator β β
β β (generate_mcp_tool_code_from_db) β β
β βββββββββββββββββββββββββββββββββββββββββββββββ β
β β
ββββββββββββββββ¬ββββββββββββββββββββ¬ββββββββββββββββββββββ
β β
βΌ βΌ
ββββββββββββββββββ ββββββββββββββββ
β FalkorDB β β PostgreSQL β
β (Knowledge β β (Webhook β
β Graph) β β Configs) β
ββββββββββββββββββ ββββββββββββββββ
```
---
## π Database Schemas
### FalkorDB (Graph Database)
**Nodes:**
- EntityNode: Entities with `name`, `group_id`, timestamps
- EpisodicNode: Sessions with `session_id`, `message_count`, status
**Relationships:**
- RELATES_TO: Facts with bi-temporal tracking
- MENTIONS: Links episodes to entities
### PostgreSQL (Relational Database)
**Tables:**
- webhooks: Single webhook configurations
- webhook_templates: Multi-webhook configurations
---
## π§ Configuration Options
All configurable via environment variables:
**Required:**
- FALKORDB_HOST, FALKORDB_PORT, FALKORDB_DATABASE
**Optional - AI:**
- OPENAI_API_KEY, OPENAI_MODEL
**Optional - Tools:**
- POSTGRES_HOST, POSTGRES_PORT, POSTGRES_DB, POSTGRES_USER, POSTGRES_PASSWORD
**Optional - Tuning:**
- SESSION_TTL_MINUTES (default: 30)
- MAX_SESSIONS (default: 1000)
- CLEANUP_INTERVAL_SECONDS (default: 300)
- CONNECTION_IDLE_TIMEOUT (default: 600)
---
## π§ͺ Testing
### Run Examples
```bash
python examples.py
```
### Manual Testing
```bash
# Start server
python main.py
# In another terminal
curl -X POST http://localhost:8080/sse \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"tools/call","params":{"name":"get_status","arguments":{}}}'
```
---
## π Learning Path
1. **Start Here**: QUICKSTART.md (5 minutes)
2. **Understand**: README.md (15 minutes)
3. **Explore**: examples.py (interactive)
4. **Deploy**: DEPLOYMENT.md (platform-specific)
5. **Customize**: Modify memory.py and main.py
---
## π€ Support & Contribution
### Getting Help
- Read documentation thoroughly
- Check examples.py for usage patterns
- Review logs for error details
- Open GitHub issues for bugs
### Contributing
Areas for improvement:
- Additional temporal operators
- Enhanced entity extraction
- More webhook templates
- Performance optimizations
- Additional deployment guides
---
## π¦ Package Verification
**Total Files:** 14
**Total Size:** ~133KB
**Languages:** Python, YAML, Markdown
**Dependencies:** 7 core, 3 optional
**File Integrity:**
- β
All core files present
- β
Documentation complete
- β
Examples included
- β
Deployment configs ready
- β
License included (MIT)
---
## π What You Get
### Immediate Use
- Production-ready MCP server
- Bi-temporal knowledge graph
- AI-powered entity extraction
- Dynamic tool generation
- Complete documentation
### Learning Resources
- 8 comprehensive examples
- Best practices demonstrated
- Architecture patterns
- Deployment strategies
### Extensibility
- Clean, modular code
- Well-documented functions
- Easy customization points
- Plugin-friendly design
---
## π Next Steps
1. **Quick Test**: Follow QUICKSTART.md
2. **Explore**: Run examples.py
3. **Customize**: Edit configurations
4. **Deploy**: Choose your platform from DEPLOYMENT.md
5. **Build**: Create your own tools and workflows
---
## π Contact & Links
- **Documentation**: See README.md
- **Issues**: GitHub issue tracker
- **License**: MIT (commercial use allowed)
- **Built With**: FastMCP, FalkorDB, OpenAI
---
**Ready to deploy your intelligent, temporal knowledge graph!** π
Built with β€οΈ for the MCP ecosystem