Skip to main content
Glama

AGI MCP Server

search_memories_similarity

Identify and retrieve memories with high vector similarity to a provided query embedding, enabling efficient recall of relevant information within the AGI MCP Server's persistent memory system.

Instructions

Search memories by vector similarity

Input Schema

NameRequiredDescriptionDefault
embeddingYesQuery embedding vector
limitNoMaximum number of results
thresholdNoMinimum similarity threshold

Input Schema (JSON Schema)

{ "properties": { "embedding": { "description": "Query embedding vector", "items": { "type": "number" }, "type": "array" }, "limit": { "default": 10, "description": "Maximum number of results", "type": "integer" }, "threshold": { "default": 0.7, "description": "Minimum similarity threshold", "type": "number" } }, "required": [ "embedding" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cognitivecomputations/agi-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server