Skip to main content
Glama

Server Configuration

Describes the environment variables required to run the server.

NameRequiredDescriptionDefault

No arguments

Capabilities

Features and capabilities supported by this server

CapabilityDetails
tools
{
  "listChanged": false
}
prompts
{
  "listChanged": false
}
resources
{
  "subscribe": false,
  "listChanged": false
}
experimental
{}

Tools

Functions exposed to the LLM to take actions

NameDescription
analyze_text
Analyze text to detect PII entities. Args: text: The text to analyze for PII language: Language code (default: "en") entities: List of entity types to detect (default: all). Examples: PERSON, EMAIL_ADDRESS, PHONE_NUMBER, CREDIT_CARD, LOCATION, DATE_TIME, etc. score_threshold: Minimum confidence score (0.0-1.0) for detection (default: 0.0) return_decision_process: Include detailed decision process in results (default: False) Returns: JSON string with detected PII entities including type, location, and confidence score
anonymize_text
Anonymize PII in text using various operators. Args: text: The text to anonymize language: Language code (default: "en") operator: Anonymization operator - "replace", "redact", "hash", "mask", "encrypt" (default: "replace") entities: List of entity types to anonymize (default: all) score_threshold: Minimum confidence score for detection (default: 0.0) operator_params: Additional parameters for the operator (e.g., {"new_value": "ANONYMIZED"}) Returns: JSON string with anonymized text and list of anonymized entities
get_supported_entities
Get list of all supported PII entity types for a language. Args: language: Language code (default: "en") Returns: JSON string with list of supported entity types and their descriptions
add_custom_recognizer
Add a custom PII recognizer with regex patterns. Args: name: Unique name for this recognizer entity_type: The entity type this recognizer detects patterns: List of pattern dicts with 'name', 'regex', and 'score' (0.0-1.0) Example: [{"name": "weak", "regex": "\d{3}", "score": 0.3}] context: Optional context words that increase confidence supported_language: Language code (default: "en") Returns: JSON string confirming the recognizer was added
batch_analyze
Analyze multiple texts in batch for PII detection. Args: texts: List of texts to analyze language: Language code (default: "en") entities: List of entity types to detect (default: all) score_threshold: Minimum confidence score (default: 0.0) Returns: JSON string with results for each text indexed by position
batch_anonymize
Anonymize multiple texts in batch. Args: texts: List of texts to anonymize language: Language code (default: "en") operator: Anonymization operator (default: "replace") entities: List of entity types to anonymize (default: all) score_threshold: Minimum confidence score (default: 0.0) Returns: JSON string with anonymized results for each text
get_anonymization_operators
Get list of available anonymization operators and their descriptions. Returns: JSON string with operator names, descriptions, and example parameters
analyze_structured_data
Analyze structured data (JSON/dict) for PII. Args: data: JSON string representing structured data language: Language code (default: "en") entities: List of entity types to detect (default: all) score_threshold: Minimum confidence score (default: 0.0) Returns: JSON string with PII findings organized by data structure path
anonymize_structured_data
Anonymize PII in structured data (JSON/dict). Args: data: JSON string representing structured data language: Language code (default: "en") operator: Anonymization operator (default: "replace") entities: List of entity types to anonymize (default: all) score_threshold: Minimum confidence score (default: 0.0) Returns: JSON string with anonymized structured data
validate_detection
Validate PII detection against expected results (useful for testing). Args: text: The text to analyze expected_entities: List of expected entities with 'entity_type', 'start', 'end' language: Language code (default: "en") Returns: JSON string with validation results including precision, recall, and F1 score

Prompts

Interactive templates invoked by user choice

NameDescription

No prompts

Resources

Contextual data attached and managed by the client

NameDescription

No resources

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cmalpass/mcp-presidio'

If you have feedback or need assistance with the MCP directory API, please join our Discord server