search_cloudflare_documentation
Find answers about Cloudflare products and features by searching official documentation. Get relevant information on Workers, Zero Trust, CDN, AI tools, and other services.
Instructions
Search the Cloudflare documentation.
This tool should be used to answer any question about Cloudflare products or features, including:
- Workers, Pages, R2, Images, Stream, D1, Durable Objects, KV, Workflows, Hyperdrive, Queues
- AI Search, Workers AI, Vectorize, AI Gateway, Browser Rendering
- Zero Trust, Access, Tunnel, Gateway, Browser Isolation, WARP, DDOS, Magic Transit, Magic WAN
- CDN, Cache, DNS, Zaraz, Argo, Rulesets, Terraform, Account and Billing
Results are returned as semantically similar chunks to the query.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
| query | Yes |
Implementation Reference
- packages/mcp-common/src/tools/docs-ai-search.tools.ts:42-80 (registration)Registration of the search_cloudflare_documentation tool, including inline handler that queries the 'docs-mcp-rag' autorag index via AI Search and formats results as XML.server.tool( 'search_cloudflare_documentation', `Search the Cloudflare documentation. This tool should be used to answer any question about Cloudflare products or features, including: - Workers, Pages, R2, Images, Stream, D1, Durable Objects, KV, Workflows, Hyperdrive, Queues - AI Search, Workers AI, Vectorize, AI Gateway, Browser Rendering - Zero Trust, Access, Tunnel, Gateway, Browser Isolation, WARP, DDOS, Magic Transit, Magic WAN - CDN, Cache, DNS, Zaraz, Argo, Rulesets, Terraform, Account and Billing Results are returned as semantically similar chunks to the query. `, { query: z.string(), }, { title: 'Search Cloudflare docs', annotations: { readOnlyHint: true, }, }, async ({ query }) => { const results = await queryAiSearch(env.AI, query) const resultsAsXml = results .map((result) => { return `<result> <url>${result.url}</url> <title>${result.title}</title> <text> ${result.text} </text> </result>` }) .join('\n') return { content: [{ type: 'text', text: resultsAsXml }], } } )
- packages/mcp-common/src/tools/docs-vectorize.tools.ts:18-55 (registration)Registration of the search_cloudflare_documentation tool using Vectorize index for semantic search, with results formatted as XML.server.tool( 'search_cloudflare_documentation', `Search the Cloudflare documentation. This tool should be used to answer any question about Cloudflare products or features, including: - Workers, Pages, R2, Images, Stream, D1, Durable Objects, KV, Workflows, Hyperdrive, Queues - AI Search, Workers AI, Vectorize, AI Gateway, Browser Rendering - Zero Trust, Access, Tunnel, Gateway, Browser Isolation, WARP, DDOS, Magic Transit, Magic WAN - CDN, Cache, DNS, Zaraz, Argo, Rulesets, Terraform, Account and Billing Results are returned as semantically similar chunks to the query. `, { query: z.string(), }, { title: 'Search Cloudflare docs', annotations: { readOnlyHint: true, }, }, async ({ query }) => { const results = await queryVectorize(env.AI, env.VECTORIZE, query, TOP_K) const resultsAsXml = results .map((result) => { return `<result> <url>${result.url}</url> <title>${result.title}</title> <text> ${result.text} </text> </result>` }) .join('\n') return { content: [{ type: 'text', text: resultsAsXml }], } }
- apps/docs-autorag/src/tools/docs-autorag.tools.ts:13-75 (registration)Registration of the search_cloudflare_documentation tool for the docs-autorag app, using autorag search and returning embedded resources.agent.server.tool( 'search_cloudflare_documentation', `Search the Cloudflare documentation. You should use this tool when: - A user asks questions about Cloudflare products (Workers, Developer Platform, Zero Trust, CDN, etc) - A user requests information about a Cloudflare feature - You are unsure of how to use some Cloudflare functionality - You are writing Cloudflare Workers code and need to look up Workers-specific documentation This tool returns a number of results from a vector database. These are embedded as resources in the response and are plaintext documents in a variety of formats. `, { // partially pulled from autorag query optimization example query: z.string().describe(`Search query. The query should: 1. Identify the core concepts and intent 2. Add relevant synonyms and related terms 3. Remove irrelevant filler words 4. Structure the query to emphasize key terms 5. Include technical or domain-specific terminology if applicable`), scoreThreshold: z .number() .min(0) .max(1) .optional() .describe('A score threshold (0-1) for which matches should be included.'), maxNumResults: z .number() .default(10) .optional() .describe('The maximum number of results to return.'), }, async (params) => { // we don't need "rewrite query" OR aiSearch because an LLM writes the query and formats the output for us. const result = await agent.env.AI.autorag(agent.env.AUTORAG_NAME).search({ query: params.query, ranking_options: params.scoreThreshold ? { score_threshold: params.scoreThreshold, } : undefined, max_num_results: params.maxNumResults, }) const resources: EmbeddedResource[] = result.data.map((result) => { const content = result.content.reduce((acc, contentPart) => { return acc + contentPart.text }, '') return { type: 'resource', resource: { uri: `docs://${result.filename}`, mimeType: mime.getType(result.filename) ?? 'text/plain', text: content, }, } }) return { content: resources, } } )
- Helper function that performs the actual AI Search query to autorag index and processes the response into results.async function queryAiSearch(ai: Ai, query: string) { const rawResponse = await doWithRetries(() => ai.autorag('docs-mcp-rag').search({ query, }) ) // Parse and validate the response using Zod const response = AiSearchResponseSchema.parse(rawResponse) return response.data.map((item) => ({ similarity: item.score, id: item.file_id, url: sourceToUrl(item.filename), title: extractTitle(item.filename), text: item.content.map((c) => c.text).join('\n'), })) }