Skip to main content
Glama
reflectTask.ts1.83 kB
import { z } from "zod"; import { getReflectTaskPrompt } from "../../prompts/index.js"; // 反思構想工具 // Task reflection tool export const reflectTaskSchema = z.object({ summary: z .string() .min(10, { message: "任務摘要不能少於10個字符,請提供更詳細的描述以確保任務目標明確", // Task summary cannot be less than 10 characters, please provide more detailed description to ensure task objectives are clear }) .describe("結構化的任務摘要,保持與分析階段一致以確保連續性"), // Structured task summary, maintaining consistency with analysis phase to ensure continuity analysis: z .string() .min(100, { message: "技術分析內容不夠詳盡,請提供完整的技術分析和實施方案", // Technical analysis content is not detailed enough, please provide complete technical analysis and implementation plan }) .describe( "完整詳盡的技術分析結果,包括所有技術細節、依賴組件和實施方案,如果需要提供程式碼請使用 pseudocode 格式且僅提供高級邏輯流程和關鍵步驟避免完整代碼" // Complete and detailed technical analysis results, including all technical details, dependent components and implementation plans, if code is needed please use pseudocode format and only provide high-level logic flow and key steps avoiding complete code ), }); export async function reflectTask({ summary, analysis, }: z.infer<typeof reflectTaskSchema>) { // 使用prompt生成器獲取最終prompt // Use prompt generator to get the final prompt const prompt = await getReflectTaskPrompt({ summary, analysis, }); return { content: [ { type: "text" as const, text: prompt, }, ], }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cjo4m06/mcp-shrimp-task-manager'

If you have feedback or need assistance with the MCP directory API, please join our Discord server