MVP_DEPLOYMENT.md•5.13 kB
# Katamari MCP - MVP Deployment Guide
## Quick Start
The Katamari MCP server is now fully functional with working capabilities! Here's how to deploy and use it.
### Prerequisites
- Python 3.9+
- Virtual environment (recommended)
### Installation
1. **Clone and setup:**
```bash
git clone <repository-url>
cd katamari-mcp
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
```
2. **Install dependencies:**
```bash
# Install CPU-only PyTorch (faster download)
pip install torch --index-url https://download.pytorch.org/whl/cpu
# Install remaining dependencies
pip install transformers pydantic aiohttp mcp pytest-asyncio beautifulsoup4 psutil
```
3. **Verify installation:**
```bash
python -c "from katamari_mcp.server import KatamariServer; print('✅ Server import successful')"
```
### Running the Server
**Basic startup:**
```bash
source .venv/bin/activate
python -m katamari_mcp.server
```
The server will:
- Initialize the adaptive learning engine
- Load the tiny LLM (Qwen2-0.5B) on first use
- ~~Start MCP stdio interface~~ ~~(REMOVED)~~
- Start MCP web interfaces (SSE/WebSocket)
- Create `.katamari/acp/` directories for learning data
### Available Capabilities
#### 1. Web Search (`web_search`)
Search the web without API tokens using multiple engines.
**Parameters:**
- `query` (string, required): Search query
- `max_results` (integer, optional, default=5): Number of results
**Example:**
```json
{
"tool": "web_search",
"arguments": {
"query": "adaptive learning systems",
"max_results": 5
}
}
```
#### 2. Web Scraping (`web_scrape`)
Extract content from web pages in text or markdown format.
**Parameters:**
- `url` (string, required): URL to scrape
- `format` (string, optional, default="markdown"): "text" or "markdown"
**Example:**
```json
{
"tool": "web_scrape",
"arguments": {
"url": "https://example.com",
"format": "markdown"
}
}
```
#### 3. ACP Feedback & Learning
Phase 2 adaptive learning capabilities:
- `acp_feedback_submit`: Submit execution feedback
- `acp_feedback_summary`: Get feedback analytics
- `acp_performance_metrics`: View capability performance
- `acp_learning_summary`: Learning progress overview
- `acp_inspect`: System inspection
- `acp_propose`: Propose new capabilities
### MCP Client Integration
**Claude Desktop integration:**
Add to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"katamari": {
"command": "python",
"args": ["-m", "katamari_mcp.server"],
"cwd": "/path/to/katamari-mcp",
"env": {
"VIRTUAL_ENV": "/path/to/katamari-mcp/.venv"
}
}
}
}
```
**Other MCP clients:**
The server uses ~~stdio transport~~ ~~(REMOVED)~~ web transports (SSE/WebSocket), compatible with any MCP client that supports remote connections.
### Configuration
Environment variables:
- `DEBUG=true`: Enable debug logging
- `KATAMARI_WORKSPACE_ROOT`: Override workspace directory
### Features
#### ✅ Working Now
- **Web Search**: DuckDuckGo + Brave Search API integration
- **Web Scraping**: HTML parsing with markdown conversion
- **Adaptive Learning**: Heuristic adjustment based on usage
- **Performance Tracking**: Real-time capability monitoring
- **Feedback System**: Multi-channel feedback collection
- **Security**: Input validation and URL safety checks
#### 🔄 Learning Behavior
The system automatically:
- Tracks execution success/failure patterns
- Adjusts heuristics based on performance
- Stores feedback for continuous improvement
- Monitors capability health scores (0-100)
### Troubleshooting
**Server won't start:**
```bash
# Check dependencies
pip list | grep -E "(torch|transformers|mcp)"
# Test import
python -c "from katamari_mcp.server import KatamariServer"
```
**LLM download issues:**
The tiny LLM downloads on first use (≈500MB). Ensure:
- Stable internet connection
- Sufficient disk space
- Firewall allows HuggingFace downloads
**Web search failures:**
- DuckDuckGo: No API key required
- Brave Search: Free tier, may have rate limits
### Development
**Run tests:**
```bash
source .venv/bin/activate
pytest tests/test_adaptive_learning.py
```
**Code style:**
```bash
source .venv/bin/activate
ruff check . # Linting
black . # Formatting
```
### Architecture
```
katamari-mcp/
├── katamari_mcp/
│ ├── server.py # Main MCP server
│ ├── router/ # Intelligent routing with tiny LLM
│ ├── capabilities/ # Web search & scraping
│ ├── acp/ # Adaptive learning system
│ ├── security/ # Input validation
│ └── utils/ # Configuration & helpers
├── tests/ # Test suite
└── .katamari/acp/ # Learning data (auto-created)
```
### Next Steps
The MVP is fully functional! Future enhancements:
- More web search engines
- File processing capabilities
- Advanced workflow composition
- GUI for learning analytics
---
**🎉 Congratulations! You now have a working Katamari MCP server with adaptive learning capabilities!**