Skip to main content
Glama
test_image.cjs1.6 kB
const { InferenceClient } = require('@huggingface/inference'); const fs = require('fs'); async function generateImage() { try { const client = new InferenceClient('TEst_TOKEN'); console.log('이미지 생성 중...'); const image = await client.textToImage({ provider: "fal-ai", model: "black-forest-labs/FLUX.1-schnell", inputs: "A cute poodle dog sleeping peacefully, curled up in a cozy bed, soft lighting, peaceful atmosphere, high quality, detailed", parameters: { num_inference_steps: 5 } }); console.log('이미지 생성 완료!'); console.log('이미지 타입:', typeof image); // Convert to base64 let base64; if (typeof image === 'string') { base64 = image; } else if (image && typeof image === 'object' && 'arrayBuffer' in image) { const arrayBuffer = await image.arrayBuffer(); base64 = Buffer.from(arrayBuffer).toString('base64'); } else { base64 = Buffer.from(image).toString('base64'); } console.log('Base64 길이:', base64.length); console.log('Base64 미리보기:', base64.substring(0, 100) + '...'); // Save to file const buffer = Buffer.from(base64, 'base64'); fs.writeFileSync('poodle_sleeping.png', buffer); console.log('이미지가 poodle_sleeping.png로 저장되었습니다!'); } catch (error) { console.error('오류 발생:', error.message); } } generateImage();

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ciel240/class_study'

If you have feedback or need assistance with the MCP directory API, please join our Discord server