# chuk-mcp-time
**High-accuracy time + timezone MCP server using NTP consensus & IANA tzdata**
A Model Context Protocol (MCP) server that provides extremely accurate time information by querying multiple NTP servers, removing outliers, and computing a consensus time independent of the system clock. Now includes comprehensive timezone support using IANA tzdata for accurate timezone conversions, DST handling, and timezone discovery. Perfect for applications requiring trusted time sources, timezone conversions, detecting clock drift, or working in distributed systems.
[](https://github.com/chuk-ai/chuk-mcp-time/actions)
[](https://badge.fury.io/py/chuk-mcp-time)
[](https://www.python.org/downloads/)
## Features
π― **Multi-Source Consensus**: Queries 4-7 NTP servers simultaneously and computes consensus time using median with outlier rejection
β‘ **Async-First**: Built on asyncio for maximum performance with concurrent NTP queries
β±οΈ **Latency Compensation**: Automatically adjusts timestamps for query duration so returned time represents "now"
π **Type-Safe**: 100% Pydantic models with full type hints and validation using enums
π **IANA Timezone Support**: Complete timezone handling with DST, conversions, and discovery
π **Clock Drift Detection**: Compare system clock against trusted NTP sources
β° **Timezone Conversions**: Convert between any IANA timezones with accurate DST handling
πΊοΈ **Timezone Discovery**: List and search 600+ IANA timezones to prevent hallucination
π **Transparent**: Returns all source data, consensus method, error estimates, and query duration
βοΈ **Configurable**: Environment-based configuration for NTP servers and consensus parameters
π **Production-Ready**: Docker support, GitHub Actions CI/CD, Fly.io deployment
π **Public Endpoint**: Try instantly at `https://time.chukai.io/mcp` - no installation needed!
## Quick Start
### π Use the Public HTTP Endpoint (No Installation)
Try it instantly with our hosted MCP server:
**Endpoint:** `https://time.chukai.io/mcp`
Configure in Claude Desktop or any MCP client to connect to the HTTP streamable endpoint. No installation required!
### π¦ Installation Options
#### Using uvx (recommended for local use)
```bash
# Run directly with uvx (auto-installs and runs)
uvx chuk-mcp-time
# For STDIO mode (Claude Desktop, mcp-cli)
uvx chuk-mcp-time
# For HTTP mode
uvx chuk-mcp-time http
```
#### Using pip
```bash
pip install chuk-mcp-time
```
#### From source
```bash
git clone https://github.com/chuk-ai/chuk-mcp-time.git
cd chuk-mcp-time
make dev-install
```
## Demo
See the server in action with a comprehensive demo:
```bash
# Run the demo script
uv run examples/demo.py
# Or with Python
python examples/demo.py
```
The demo shows:
- β
Querying 4 NTP servers with consensus
- β
System clock drift detection (detects Β±millisecond accuracy)
- β
Timezone conversions (6 timezones from single consensus)
- β
Stability across 5 samples
**Example output:**
```
π Results:
Consensus Time (UTC).................... 2025-11-28T10:04:59.916227+00:00
Sources Used............................ 4/4
Estimated Error......................... Β±10.0 ms
Query Time.............................. 42.8 ms
π Clock Comparison:
Delta................................... +2.4 ms
Status.................................. β
OK - System clock is accurate
```
See [examples/README.md](examples/README.md) for detailed demo documentation.
## Usage with MCP Clients
### Option 1: Public HTTP Endpoint (Easiest)
Connect to our hosted server at `https://time.chukai.io/mcp`
**Claude Desktop Configuration:**
Add to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"time": {
"url": "https://time.chukai.io/mcp"
}
}
}
```
β
No installation required
β
Always up to date
β
High availability
### Option 2: Local STDIO (Most Common)
Run locally using uvx for STDIO transport (works with Claude Desktop, mcp-cli, etc.):
**Claude Desktop Configuration:**
```json
{
"mcpServers": {
"time": {
"command": "uvx",
"args": ["chuk-mcp-time"]
}
}
}
```
**Or run manually:**
```bash
# Run with uvx
uvx chuk-mcp-time
# Or with Python
python -m chuk_mcp_time.server
```
### Option 3: Local HTTP Server
Run your own HTTP server for testing/development:
```bash
# Start HTTP server
uvx chuk-mcp-time http
# Or with Python
python -m chuk_mcp_time.server http
# Server runs on http://localhost:8000
```
**Claude Desktop Configuration:**
```json
{
"mcpServers": {
"time": {
"url": "http://localhost:8000/mcp"
}
}
}
```
## Available Tools
### 1. `get_time_utc`
Get current UTC time with high accuracy using NTP consensus.
**Parameters:**
- `mode` (optional): `"fast"` (default, 4 servers) or `"accurate"` (7 servers)
- `compensate_latency` (optional): `true` (default) to adjust timestamp for query duration
**Returns:**
```json
{
"iso8601_time": "2025-11-28T01:23:45.123456+00:00",
"epoch_ms": 1732756425123,
"sources_used": 4,
"total_sources": 4,
"consensus_method": "median_with_outlier_rejection",
"estimated_error_ms": 12.5,
"source_samples": [...],
"warnings": ["Applied +150.2ms latency compensation to timestamp"],
"system_time": "2025-11-28T01:23:49.456789+00:00",
"system_delta_ms": 4333.333,
"query_duration_ms": 150.2,
"latency_compensated": true
}
```
**Latency Compensation:**
By default, the timestamp is adjusted to account for the time spent querying NTP servers. This means the returned timestamp represents "now" (when the response is sent), not when the NTP queries started. This is especially important for slow networks or accurate mode.
### 2. `get_time_for_timezone`
Get current time for a specific timezone with high accuracy.
**Parameters:**
- `timezone_name`: IANA timezone name (e.g., `"America/New_York"`, `"Europe/London"`)
- `mode` (optional): `"fast"` or `"accurate"`
- `compensate_latency` (optional): `true` (default) to adjust timestamp for query duration
**Returns:**
Same as `get_time_utc` plus:
```json
{
"timezone": "America/New_York",
"local_time": "2025-11-27T20:23:45.123456-05:00"
}
```
### 3. `get_local_time`
Get current time for a specific IANA timezone with high accuracy.
Uses NTP consensus for accurate UTC time, then converts to the requested timezone using IANA tzdata. Provides authoritative local time independent of system clock.
**Parameters:**
- `timezone`: IANA timezone identifier (e.g., `"America/New_York"`, `"Europe/London"`, `"Asia/Tokyo"`)
- `mode` (optional): `"fast"` or `"accurate"`
- `compensate_latency` (optional): `true` (default) to adjust timestamp for query duration
**Returns:**
```json
{
"local_datetime": "2025-11-27T20:23:45.123456-05:00",
"timezone": "America/New_York",
"utc_offset_seconds": -18000,
"is_dst": false,
"abbreviation": "EST",
"source_utc": "2025-11-28T01:23:45.123456+00:00",
"tzdata_version": "2024b",
"estimated_error_ms": 12.5
}
```
### 4. `convert_time`
Convert a datetime from one timezone to another using IANA rules.
Performs timezone conversion independent of system clock. Uses IANA tzdata to handle all DST transitions, historical changes, and political boundaries.
**Parameters:**
- `datetime_str`: ISO 8601 datetime string (naive, will be interpreted in from_timezone)
- `from_timezone`: Source IANA timezone identifier
- `to_timezone`: Target IANA timezone identifier
**Returns:**
```json
{
"from_timezone": "America/New_York",
"from_datetime": "2025-06-15T14:30:00-04:00",
"from_utc_offset_seconds": -14400,
"to_timezone": "Europe/London",
"to_datetime": "2025-06-15T19:30:00+01:00",
"to_utc_offset_seconds": 3600,
"offset_difference_seconds": 18000,
"explanation": "Europe/London is 5.0 hours ahead of America/New_York (UTC-4.0 β UTC+1.0)"
}
```
### 5. `list_timezones`
List available IANA timezones with optional filtering.
Returns all valid IANA timezone identifiers. Helps discover correct timezone names and prevents hallucination of invalid timezones.
**Parameters:**
- `country_code` (optional): ISO 3166 country code filter (e.g., `"US"`, `"GB"`, `"FR"`)
- `search` (optional): Substring search filter (case-insensitive)
**Returns:**
```json
{
"timezones": [
{
"id": "America/New_York",
"country_code": "US",
"comment": null,
"example_city": "New York"
},
{
"id": "Europe/London",
"country_code": "GB",
"comment": null,
"example_city": "London"
}
],
"total_count": 2,
"tzdata_version": "2024b"
}
```
**Example searches:**
- `search: "New"` β Returns all timezones with "New" in the name
- `search: "Tokyo"` β Returns Asia/Tokyo
- No filters β Returns all 600+ IANA timezones
### 6. `get_timezone_info`
Get detailed information about a timezone including upcoming transitions.
Provides comprehensive timezone metadata including current offset, DST status, and upcoming transitions (e.g., DST changes). Useful for planning and understanding timezone behavior.
**Parameters:**
- `timezone`: IANA timezone identifier
- `mode` (optional): `"fast"` or `"accurate"` (affects accuracy of current time)
**Returns:**
```json
{
"timezone": "America/New_York",
"country_code": null,
"comment": null,
"current_offset_seconds": -18000,
"current_is_dst": false,
"current_abbreviation": "EST",
"transitions": [
{
"from_datetime": "2026-03-08T07:00:00+00:00",
"utc_offset_seconds": -14400,
"is_dst": true,
"abbreviation": "EDT"
},
{
"from_datetime": "2026-11-01T06:00:00+00:00",
"utc_offset_seconds": -18000,
"is_dst": false,
"abbreviation": "EST"
}
],
"tzdata_version": "2024b"
}
```
### 7. `compare_system_clock`
Compare system clock against trusted NTP sources to detect drift.
**Parameters:**
- `mode` (optional): `"fast"` or `"accurate"`
**Returns:**
```json
{
"system_time": "2025-11-28T01:23:49.456789+00:00",
"trusted_time": "2025-11-28T01:23:45.123456+00:00",
"delta_ms": 4333.333,
"estimated_error_ms": 12.5,
"status": "error"
}
```
Status values:
- `"ok"`: Delta < 100ms
- `"drift"`: Delta 100-1000ms
- `"error"`: Delta > 1000ms
## Configuration
Configuration can be set via environment variables or `.env` file:
```bash
# NTP Servers (comma-separated)
TIME_SERVER_NTP_SERVERS=time.cloudflare.com,time.google.com,time.apple.com
# NTP timeout in seconds (0.5 to 10.0)
TIME_SERVER_NTP_TIMEOUT=2.0
# Maximum outlier deviation in milliseconds (100.0 to 60000.0)
TIME_SERVER_MAX_OUTLIER_DEVIATION_MS=5000.0
# Minimum number of sources required (1 to 10)
TIME_SERVER_MIN_SOURCES=3
# Maximum disagreement before warning in milliseconds (10.0 to 5000.0)
TIME_SERVER_MAX_DISAGREEMENT_MS=250.0
# Number of servers to query in fast mode (2 to 10)
TIME_SERVER_FAST_MODE_SERVER_COUNT=4
```
See [.env.example](.env.example) for complete configuration template.
## How It Works
### Consensus Algorithm
1. **Query Multiple Sources**: Queries 4-7 NTP servers concurrently based on mode
2. **RTT Adjustment**: Adjusts timestamps by adding half the round-trip time
3. **Outlier Removal**: Iteratively removes outliers > 5 seconds from median
4. **Median Consensus**: Computes median of remaining timestamps
5. **Error Estimation**: Calculates IQR (interquartile range) as error estimate
6. **Latency Compensation**: Adds query duration to timestamp so result represents "now"
7. **System Comparison**: Compares consensus against system clock
### Latency Compensation
The server tracks how long it takes to query NTP servers and compute consensus (typically 100-500ms). By default, this duration is added to the consensus timestamp, so the returned time represents when the response is sent, not when queries began.
**Example:**
- Query starts at T+0ms
- NTP consensus computed at T+150ms β timestamp = 12:00:00.000
- Latency compensation: 12:00:00.000 + 150ms = 12:00:00.150
- Response sent at T+150ms with timestamp 12:00:00.150
This ensures the timestamp is as accurate as possible when received by the caller. You can disable this with `compensate_latency=false` if you prefer the raw consensus timestamp.
### Timezone Support
The server uses Python's `zoneinfo` module with IANA tzdata for authoritative timezone information:
1. **IANA tzdata Source**: Uses official IANA Time Zone Database (maintained by IANA, curated by global experts)
2. **DST Handling**: Automatic daylight saving time transitions using historical and future rules
3. **Political Boundaries**: Handles all timezone changes, country boundaries, and historical adjustments
4. **Transition Detection**: Identifies upcoming DST changes and offset modifications
5. **No System Clock Dependency**: All timezone conversions use NTP consensus time, not system clock
**Timezone Data Hierarchy:**
- UTC Authority: NTP consensus (time.google.com, time.cloudflare.com, etc.)
- Political Time: IANA tzdata (official timezone database)
- Local Conversion: Python's `zoneinfo` module
- Result: Accurate local time independent of system clock
### Default NTP Servers
- `time.cloudflare.com` - Cloudflare's anycast NTP
- `time.google.com` - Google's public NTP
- `time.apple.com` - Apple's NTP servers
- `0-3.pool.ntp.org` - NTP Pool Project servers
All servers are stratum 1-2 for maximum accuracy.
## Development
### Setup
```bash
# Clone repository
git clone https://github.com/chuk-ai/chuk-mcp-time.git
cd chuk-mcp-time
# Install development dependencies
make dev-install
```
### Testing
```bash
# Run tests (skip network tests)
make test
# Run tests with coverage
make test-cov
# Run all tests including network tests
pytest -v
# Run specific test
pytest tests/test_consensus.py -v
```
### Code Quality
```bash
# Run linter
make lint
# Auto-format code
make format
# Type checking
make typecheck
# Security checks
make security
# Run all checks
make check
```
### Building
```bash
# Build distribution packages
uv build
# Build Docker image
make docker-build
# Run Docker container
make docker-run
```
## Deployment
### Fly.io
```bash
# Deploy to Fly.io
flyctl deploy
# Or use GitHub Actions (push to main branch)
git push origin main
```
### Docker
```bash
# Build image
docker build -t chuk-mcp-time .
# Run container
docker run -p 8000:8000 chuk-mcp-time
# With custom config
docker run -p 8000:8000 \
-e TIME_SERVER_NTP_TIMEOUT=5.0 \
-e TIME_SERVER_MIN_SOURCES=5 \
chuk-mcp-time
```
## Architecture
```
chuk-mcp-time/
βββ src/chuk_mcp_time/
β βββ __init__.py
β βββ config.py # Pydantic Settings configuration
β βββ models.py # Pydantic models (enums, responses)
β βββ ntp_client.py # Async NTP client
β βββ consensus.py # Consensus algorithm engine
β βββ timezone_utils.py # IANA timezone utilities
β βββ server.py # MCP server with 7 tools
βββ tests/
β βββ test_config.py
β βββ test_consensus.py
β βββ test_ntp_client.py
β βββ test_server_tools.py
βββ pyproject.toml
βββ Makefile
βββ Dockerfile
βββ fly.toml
βββ README.md
```
## Use Cases
### 1. Detecting Clock Drift
```python
# Use compare_system_clock to monitor clock health
response = await compare_system_clock(mode="accurate")
if response.status == "error":
print(f"β οΈ System clock is off by {response.delta_ms:.1f}ms!")
# Take corrective action...
```
### 2. Trusted Timestamps for Logs
```python
# Get consensus time for reliable logging
time_info = await get_time_utc(mode="fast")
log_entry = {
"event": "user_login",
"timestamp": time_info.iso8601_time,
"source_count": time_info.sources_used,
"error_ms": time_info.estimated_error_ms
}
```
### 3. Timezone Conversions for Scheduling
```python
# Convert meeting time between timezones
result = await convert_time(
datetime_str="2025-12-15T14:00:00",
from_timezone="America/New_York",
to_timezone="Asia/Tokyo"
)
print(result.explanation)
# "Asia/Tokyo is 14.0 hours ahead of America/New_York (UTC-5.0 β UTC+9.0)"
print(f"Meeting time in Tokyo: {result.to_datetime}")
# "2025-12-16T04:00:00+09:00"
```
### 4. Multi-Region Time Coordination
```python
# Get accurate local time for different regions
ny_time = await get_local_time("America/New_York")
london_time = await get_local_time("Europe/London")
tokyo_time = await get_local_time("Asia/Tokyo")
# All from the same NTP consensus - guaranteed consistency
# Each includes DST status, offset, and abbreviation
print(f"NY: {ny_time.local_datetime} ({ny_time.abbreviation})")
print(f"London: {london_time.local_datetime} ({london_time.abbreviation})")
print(f"Tokyo: {tokyo_time.local_datetime} ({tokyo_time.abbreviation})")
```
### 5. Discovering Valid Timezones
```python
# Search for timezones to avoid hallucination
timezones = await list_timezones(search="New")
for tz in timezones.timezones:
print(f"{tz.id} - {tz.example_city}")
# America/New_York - New York
# America/North_Dakota/New_Salem - New Salem
# ...
```
### 6. Planning Around DST Transitions
```python
# Get upcoming DST transitions
info = await get_timezone_info("America/New_York")
print(f"Current: {info.current_abbreviation} (DST: {info.current_is_dst})")
print(f"Upcoming transitions:")
for transition in info.transitions:
print(f" {transition.from_datetime}: {transition.abbreviation} (DST: {transition.is_dst})")
```
### 7. Financial/Trading Applications
```python
# High-accuracy mode for financial operations
time_info = await get_time_utc(mode="accurate")
if time_info.estimated_error_ms < 20:
# Error < 20ms, safe to use for timestamp-sensitive operations
execute_trade(timestamp=time_info.epoch_ms)
else:
# Too much uncertainty, defer or use alternative timing
log_warning("Time uncertainty too high", error_ms=time_info.estimated_error_ms)
```
## Why Use This Over System Time?
### Problems with System Clocks
- **Drift**: System clocks drift over time (typically 10-50 ppm)
- **Virtualization**: VMs can have severe time skew
- **Containers**: Docker containers inherit host clock issues
- **Development**: Dev machines often have incorrect time
- **Distributed Systems**: Hard to trust time across multiple hosts
### This Solution Provides
- **Independent Verification**: Multiple external sources
- **Outlier Detection**: Automatic removal of bad sources
- **Transparency**: See all source data and warnings
- **Error Bounds**: Know the accuracy of the time
- **Auditability**: Full data for debugging time issues
## Performance
- **Fast Mode**: ~40-150ms (queries 4 servers)
- **Accurate Mode**: ~100-300ms (queries 7 servers)
- **Typical Accuracy**: Β±10-50ms (much better than system clock drift)
- **Throughput**: Limited by NTP query rate (recommend caching for high-frequency use)
### Latency Breakdown
- NTP queries (concurrent): 20-100ms per server
- Consensus calculation: <1ms
- Latency compensation: Automatically added to timestamp
- Total round-trip: 40-300ms depending on mode and network
## Limitations
- **Network Required**: Requires internet access to NTP servers
- **Latency**: 100-500ms per query (not suitable for microsecond precision)
- **Rate Limiting**: Don't query too frequently (respect NTP pool guidelines)
- **Accuracy**: Β±10-50ms typical (good enough for most applications, not atomic clock precision)
## Contributing
Contributions welcome! Please:
1. Fork the repository
2. Create a feature branch
3. Make your changes with tests
4. Run `make check` to ensure quality
5. Submit a pull request
## License
MIT License - see [LICENSE](LICENSE) for details
## Credits
Built with:
- [chuk-mcp-server](https://github.com/chuk-ai/chuk-mcp-server) - High-performance MCP server framework
- [Pydantic](https://pydantic.dev) - Data validation using Python type hints
- NTP Pool Project servers
## Support
- π Issues: [GitHub Issues](https://github.com/chuk-ai/chuk-mcp-time/issues)
- π¬ Discussions: [GitHub Discussions](https://github.com/chuk-ai/chuk-mcp-time/discussions)
- π§ Email: chris@chuk.ai
---
**Made with β€οΈ by the Chuk AI team**