Skip to main content
Glama
chrishayuk

chuk-mcp-time

by chrishayuk

chuk-mcp-time

High-accuracy time + timezone MCP server using NTP consensus & IANA tzdata

A Model Context Protocol (MCP) server that provides extremely accurate time information by querying multiple NTP servers, removing outliers, and computing a consensus time independent of the system clock. Now includes comprehensive timezone support using IANA tzdata for accurate timezone conversions, DST handling, and timezone discovery. Perfect for applications requiring trusted time sources, timezone conversions, detecting clock drift, or working in distributed systems.

Test PyPI version Python 3.11+

Features

🎯 Multi-Source Consensus: Queries 4-7 NTP servers simultaneously and computes consensus time using median with outlier rejection

⚑ Async-First: Built on asyncio for maximum performance with concurrent NTP queries

⏱️ Latency Compensation: Automatically adjusts timestamps for query duration so returned time represents "now"

πŸ”’ Type-Safe: 100% Pydantic models with full type hints and validation using enums

🌍 IANA Timezone Support: Complete timezone handling with DST, conversions, and discovery

πŸ” Clock Drift Detection: Compare system clock against trusted NTP sources

⏰ Timezone Conversions: Convert between any IANA timezones with accurate DST handling

πŸ—ΊοΈ Timezone Discovery: List and search 600+ IANA timezones to prevent hallucination

πŸ“Š Transparent: Returns all source data, consensus method, error estimates, and query duration

βš™οΈ Configurable: Environment-based configuration for NTP servers and consensus parameters

πŸš€ Production-Ready: Docker support, GitHub Actions CI/CD, Fly.io deployment

🌐 Public Endpoint: Try instantly at https://time.chukai.io/mcp - no installation needed!

Quick Start

🌐 Use the Public HTTP Endpoint (No Installation)

Try it instantly with our hosted MCP server:

Endpoint: https://time.chukai.io/mcp

Configure in Claude Desktop or any MCP client to connect to the HTTP streamable endpoint. No installation required!

πŸ“¦ Installation Options

# Run directly with uvx (auto-installs and runs) uvx chuk-mcp-time # For STDIO mode (Claude Desktop, mcp-cli) uvx chuk-mcp-time # For HTTP mode uvx chuk-mcp-time http

Using pip

pip install chuk-mcp-time

From source

git clone https://github.com/chuk-ai/chuk-mcp-time.git cd chuk-mcp-time make dev-install

Demo

See the server in action with a comprehensive demo:

# Run the demo script uv run examples/demo.py # Or with Python python examples/demo.py

The demo shows:

  • βœ… Querying 4 NTP servers with consensus

  • βœ… System clock drift detection (detects Β±millisecond accuracy)

  • βœ… Timezone conversions (6 timezones from single consensus)

  • βœ… Stability across 5 samples

Example output:

πŸ“Š Results: Consensus Time (UTC).................... 2025-11-28T10:04:59.916227+00:00 Sources Used............................ 4/4 Estimated Error......................... Β±10.0 ms Query Time.............................. 42.8 ms πŸ• Clock Comparison: Delta................................... +2.4 ms Status.................................. βœ… OK - System clock is accurate

See examples/README.md for detailed demo documentation.

Usage with MCP Clients

Option 1: Public HTTP Endpoint (Easiest)

Connect to our hosted server at https://time.chukai.io/mcp

Claude Desktop Configuration:

Add to your claude_desktop_config.json:

{ "mcpServers": { "time": { "url": "https://time.chukai.io/mcp" } } }

βœ… No installation required βœ… Always up to date βœ… High availability

Option 2: Local STDIO (Most Common)

Run locally using uvx for STDIO transport (works with Claude Desktop, mcp-cli, etc.):

Claude Desktop Configuration:

{ "mcpServers": { "time": { "command": "uvx", "args": ["chuk-mcp-time"] } } }

Or run manually:

# Run with uvx uvx chuk-mcp-time # Or with Python python -m chuk_mcp_time.server

Option 3: Local HTTP Server

Run your own HTTP server for testing/development:

# Start HTTP server uvx chuk-mcp-time http # Or with Python python -m chuk_mcp_time.server http # Server runs on http://localhost:8000

Claude Desktop Configuration:

{ "mcpServers": { "time": { "url": "http://localhost:8000/mcp" } } }

Available Tools

1. get_time_utc

Get current UTC time with high accuracy using NTP consensus.

Parameters:

  • mode (optional): "fast" (default, 4 servers) or "accurate" (7 servers)

  • compensate_latency (optional): true (default) to adjust timestamp for query duration

Returns:

{ "iso8601_time": "2025-11-28T01:23:45.123456+00:00", "epoch_ms": 1732756425123, "sources_used": 4, "total_sources": 4, "consensus_method": "median_with_outlier_rejection", "estimated_error_ms": 12.5, "source_samples": [...], "warnings": ["Applied +150.2ms latency compensation to timestamp"], "system_time": "2025-11-28T01:23:49.456789+00:00", "system_delta_ms": 4333.333, "query_duration_ms": 150.2, "latency_compensated": true }

Latency Compensation: By default, the timestamp is adjusted to account for the time spent querying NTP servers. This means the returned timestamp represents "now" (when the response is sent), not when the NTP queries started. This is especially important for slow networks or accurate mode.

2. get_time_for_timezone

Get current time for a specific timezone with high accuracy.

Parameters:

  • timezone_name: IANA timezone name (e.g., "America/New_York", "Europe/London")

  • mode (optional): "fast" or "accurate"

  • compensate_latency (optional): true (default) to adjust timestamp for query duration

Returns: Same as get_time_utc plus:

{ "timezone": "America/New_York", "local_time": "2025-11-27T20:23:45.123456-05:00" }

3. get_local_time

Get current time for a specific IANA timezone with high accuracy.

Uses NTP consensus for accurate UTC time, then converts to the requested timezone using IANA tzdata. Provides authoritative local time independent of system clock.

Parameters:

  • timezone: IANA timezone identifier (e.g., "America/New_York", "Europe/London", "Asia/Tokyo")

  • mode (optional): "fast" or "accurate"

  • compensate_latency (optional): true (default) to adjust timestamp for query duration

Returns:

{ "local_datetime": "2025-11-27T20:23:45.123456-05:00", "timezone": "America/New_York", "utc_offset_seconds": -18000, "is_dst": false, "abbreviation": "EST", "source_utc": "2025-11-28T01:23:45.123456+00:00", "tzdata_version": "2024b", "estimated_error_ms": 12.5 }

4. convert_time

Convert a datetime from one timezone to another using IANA rules.

Performs timezone conversion independent of system clock. Uses IANA tzdata to handle all DST transitions, historical changes, and political boundaries.

Parameters:

  • datetime_str: ISO 8601 datetime string (naive, will be interpreted in from_timezone)

  • from_timezone: Source IANA timezone identifier

  • to_timezone: Target IANA timezone identifier

Returns:

{ "from_timezone": "America/New_York", "from_datetime": "2025-06-15T14:30:00-04:00", "from_utc_offset_seconds": -14400, "to_timezone": "Europe/London", "to_datetime": "2025-06-15T19:30:00+01:00", "to_utc_offset_seconds": 3600, "offset_difference_seconds": 18000, "explanation": "Europe/London is 5.0 hours ahead of America/New_York (UTC-4.0 β†’ UTC+1.0)" }

5. list_timezones

List available IANA timezones with optional filtering.

Returns all valid IANA timezone identifiers. Helps discover correct timezone names and prevents hallucination of invalid timezones.

Parameters:

  • country_code (optional): ISO 3166 country code filter (e.g., "US", "GB", "FR")

  • search (optional): Substring search filter (case-insensitive)

Returns:

{ "timezones": [ { "id": "America/New_York", "country_code": "US", "comment": null, "example_city": "New York" }, { "id": "Europe/London", "country_code": "GB", "comment": null, "example_city": "London" } ], "total_count": 2, "tzdata_version": "2024b" }

Example searches:

  • search: "New" β†’ Returns all timezones with "New" in the name

  • search: "Tokyo" β†’ Returns Asia/Tokyo

  • No filters β†’ Returns all 600+ IANA timezones

6. get_timezone_info

Get detailed information about a timezone including upcoming transitions.

Provides comprehensive timezone metadata including current offset, DST status, and upcoming transitions (e.g., DST changes). Useful for planning and understanding timezone behavior.

Parameters:

  • timezone: IANA timezone identifier

  • mode (optional): "fast" or "accurate" (affects accuracy of current time)

Returns:

{ "timezone": "America/New_York", "country_code": null, "comment": null, "current_offset_seconds": -18000, "current_is_dst": false, "current_abbreviation": "EST", "transitions": [ { "from_datetime": "2026-03-08T07:00:00+00:00", "utc_offset_seconds": -14400, "is_dst": true, "abbreviation": "EDT" }, { "from_datetime": "2026-11-01T06:00:00+00:00", "utc_offset_seconds": -18000, "is_dst": false, "abbreviation": "EST" } ], "tzdata_version": "2024b" }

7. compare_system_clock

Compare system clock against trusted NTP sources to detect drift.

Parameters:

  • mode (optional): "fast" or "accurate"

Returns:

{ "system_time": "2025-11-28T01:23:49.456789+00:00", "trusted_time": "2025-11-28T01:23:45.123456+00:00", "delta_ms": 4333.333, "estimated_error_ms": 12.5, "status": "error" }

Status values:

  • "ok": Delta < 100ms

  • "drift": Delta 100-1000ms

  • "error": Delta > 1000ms

Configuration

Configuration can be set via environment variables or .env file:

# NTP Servers (comma-separated) TIME_SERVER_NTP_SERVERS=time.cloudflare.com,time.google.com,time.apple.com # NTP timeout in seconds (0.5 to 10.0) TIME_SERVER_NTP_TIMEOUT=2.0 # Maximum outlier deviation in milliseconds (100.0 to 60000.0) TIME_SERVER_MAX_OUTLIER_DEVIATION_MS=5000.0 # Minimum number of sources required (1 to 10) TIME_SERVER_MIN_SOURCES=3 # Maximum disagreement before warning in milliseconds (10.0 to 5000.0) TIME_SERVER_MAX_DISAGREEMENT_MS=250.0 # Number of servers to query in fast mode (2 to 10) TIME_SERVER_FAST_MODE_SERVER_COUNT=4

See .env.example for complete configuration template.

How It Works

Consensus Algorithm

  1. Query Multiple Sources: Queries 4-7 NTP servers concurrently based on mode

  2. RTT Adjustment: Adjusts timestamps by adding half the round-trip time

  3. Outlier Removal: Iteratively removes outliers > 5 seconds from median

  4. Median Consensus: Computes median of remaining timestamps

  5. Error Estimation: Calculates IQR (interquartile range) as error estimate

  6. Latency Compensation: Adds query duration to timestamp so result represents "now"

  7. System Comparison: Compares consensus against system clock

Latency Compensation

The server tracks how long it takes to query NTP servers and compute consensus (typically 100-500ms). By default, this duration is added to the consensus timestamp, so the returned time represents when the response is sent, not when queries began.

Example:

  • Query starts at T+0ms

  • NTP consensus computed at T+150ms β†’ timestamp = 12:00:00.000

  • Latency compensation: 12:00:00.000 + 150ms = 12:00:00.150

  • Response sent at T+150ms with timestamp 12:00:00.150

This ensures the timestamp is as accurate as possible when received by the caller. You can disable this with compensate_latency=false if you prefer the raw consensus timestamp.

Timezone Support

The server uses Python's zoneinfo module with IANA tzdata for authoritative timezone information:

  1. IANA tzdata Source: Uses official IANA Time Zone Database (maintained by IANA, curated by global experts)

  2. DST Handling: Automatic daylight saving time transitions using historical and future rules

  3. Political Boundaries: Handles all timezone changes, country boundaries, and historical adjustments

  4. Transition Detection: Identifies upcoming DST changes and offset modifications

  5. No System Clock Dependency: All timezone conversions use NTP consensus time, not system clock

Timezone Data Hierarchy:

  • UTC Authority: NTP consensus (time.google.com, time.cloudflare.com, etc.)

  • Political Time: IANA tzdata (official timezone database)

  • Local Conversion: Python's zoneinfo module

  • Result: Accurate local time independent of system clock

Default NTP Servers

  • time.cloudflare.com - Cloudflare's anycast NTP

  • time.google.com - Google's public NTP

  • time.apple.com - Apple's NTP servers

  • 0-3.pool.ntp.org - NTP Pool Project servers

All servers are stratum 1-2 for maximum accuracy.

Development

Setup

# Clone repository git clone https://github.com/chuk-ai/chuk-mcp-time.git cd chuk-mcp-time # Install development dependencies make dev-install

Testing

# Run tests (skip network tests) make test # Run tests with coverage make test-cov # Run all tests including network tests pytest -v # Run specific test pytest tests/test_consensus.py -v

Code Quality

# Run linter make lint # Auto-format code make format # Type checking make typecheck # Security checks make security # Run all checks make check

Building

# Build distribution packages uv build # Build Docker image make docker-build # Run Docker container make docker-run

Deployment

Fly.io

# Deploy to Fly.io flyctl deploy # Or use GitHub Actions (push to main branch) git push origin main

Docker

# Build image docker build -t chuk-mcp-time . # Run container docker run -p 8000:8000 chuk-mcp-time # With custom config docker run -p 8000:8000 \ -e TIME_SERVER_NTP_TIMEOUT=5.0 \ -e TIME_SERVER_MIN_SOURCES=5 \ chuk-mcp-time

Architecture

chuk-mcp-time/ β”œβ”€β”€ src/chuk_mcp_time/ β”‚ β”œβ”€β”€ __init__.py β”‚ β”œβ”€β”€ config.py # Pydantic Settings configuration β”‚ β”œβ”€β”€ models.py # Pydantic models (enums, responses) β”‚ β”œβ”€β”€ ntp_client.py # Async NTP client β”‚ β”œβ”€β”€ consensus.py # Consensus algorithm engine β”‚ β”œβ”€β”€ timezone_utils.py # IANA timezone utilities β”‚ └── server.py # MCP server with 7 tools β”œβ”€β”€ tests/ β”‚ β”œβ”€β”€ test_config.py β”‚ β”œβ”€β”€ test_consensus.py β”‚ β”œβ”€β”€ test_ntp_client.py β”‚ └── test_server_tools.py β”œβ”€β”€ pyproject.toml β”œβ”€β”€ Makefile β”œβ”€β”€ Dockerfile β”œβ”€β”€ fly.toml └── README.md

Use Cases

1. Detecting Clock Drift

# Use compare_system_clock to monitor clock health response = await compare_system_clock(mode="accurate") if response.status == "error": print(f"⚠️ System clock is off by {response.delta_ms:.1f}ms!") # Take corrective action...

2. Trusted Timestamps for Logs

# Get consensus time for reliable logging time_info = await get_time_utc(mode="fast") log_entry = { "event": "user_login", "timestamp": time_info.iso8601_time, "source_count": time_info.sources_used, "error_ms": time_info.estimated_error_ms }

3. Timezone Conversions for Scheduling

# Convert meeting time between timezones result = await convert_time( datetime_str="2025-12-15T14:00:00", from_timezone="America/New_York", to_timezone="Asia/Tokyo" ) print(result.explanation) # "Asia/Tokyo is 14.0 hours ahead of America/New_York (UTC-5.0 β†’ UTC+9.0)" print(f"Meeting time in Tokyo: {result.to_datetime}") # "2025-12-16T04:00:00+09:00"

4. Multi-Region Time Coordination

# Get accurate local time for different regions ny_time = await get_local_time("America/New_York") london_time = await get_local_time("Europe/London") tokyo_time = await get_local_time("Asia/Tokyo") # All from the same NTP consensus - guaranteed consistency # Each includes DST status, offset, and abbreviation print(f"NY: {ny_time.local_datetime} ({ny_time.abbreviation})") print(f"London: {london_time.local_datetime} ({london_time.abbreviation})") print(f"Tokyo: {tokyo_time.local_datetime} ({tokyo_time.abbreviation})")

5. Discovering Valid Timezones

# Search for timezones to avoid hallucination timezones = await list_timezones(search="New") for tz in timezones.timezones: print(f"{tz.id} - {tz.example_city}") # America/New_York - New York # America/North_Dakota/New_Salem - New Salem # ...

6. Planning Around DST Transitions

# Get upcoming DST transitions info = await get_timezone_info("America/New_York") print(f"Current: {info.current_abbreviation} (DST: {info.current_is_dst})") print(f"Upcoming transitions:") for transition in info.transitions: print(f" {transition.from_datetime}: {transition.abbreviation} (DST: {transition.is_dst})")

7. Financial/Trading Applications

# High-accuracy mode for financial operations time_info = await get_time_utc(mode="accurate") if time_info.estimated_error_ms < 20: # Error < 20ms, safe to use for timestamp-sensitive operations execute_trade(timestamp=time_info.epoch_ms) else: # Too much uncertainty, defer or use alternative timing log_warning("Time uncertainty too high", error_ms=time_info.estimated_error_ms)

Why Use This Over System Time?

Problems with System Clocks

  • Drift: System clocks drift over time (typically 10-50 ppm)

  • Virtualization: VMs can have severe time skew

  • Containers: Docker containers inherit host clock issues

  • Development: Dev machines often have incorrect time

  • Distributed Systems: Hard to trust time across multiple hosts

This Solution Provides

  • Independent Verification: Multiple external sources

  • Outlier Detection: Automatic removal of bad sources

  • Transparency: See all source data and warnings

  • Error Bounds: Know the accuracy of the time

  • Auditability: Full data for debugging time issues

Performance

  • Fast Mode: ~40-150ms (queries 4 servers)

  • Accurate Mode: ~100-300ms (queries 7 servers)

  • Typical Accuracy: Β±10-50ms (much better than system clock drift)

  • Throughput: Limited by NTP query rate (recommend caching for high-frequency use)

Latency Breakdown

  • NTP queries (concurrent): 20-100ms per server

  • Consensus calculation: <1ms

  • Latency compensation: Automatically added to timestamp

  • Total round-trip: 40-300ms depending on mode and network

Limitations

  • Network Required: Requires internet access to NTP servers

  • Latency: 100-500ms per query (not suitable for microsecond precision)

  • Rate Limiting: Don't query too frequently (respect NTP pool guidelines)

  • Accuracy: Β±10-50ms typical (good enough for most applications, not atomic clock precision)

Contributing

Contributions welcome! Please:

  1. Fork the repository

  2. Create a feature branch

  3. Make your changes with tests

  4. Run make check to ensure quality

  5. Submit a pull request

License

MIT License - see LICENSE for details

Credits

Built with:

  • chuk-mcp-server - High-performance MCP server framework

  • Pydantic - Data validation using Python type hints

  • NTP Pool Project servers

Support


Made with ❀️ by the Chuk AI team

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chrishayuk/chuk-mcp-time'

If you have feedback or need assistance with the MCP directory API, please join our Discord server