Skip to main content
Glama
chirag127

Stochastic Thinking MCP Server

stochasticalgorithm

Apply stochastic algorithms like MDPs, MCTS, and Bayesian optimization to solve decision-making problems with uncertainty, enabling systematic policy optimization and action selection.

Instructions

A tool for applying stochastic algorithms to decision-making problems. Supports various algorithms including:

  • Markov Decision Processes (MDPs): Optimize policies over long sequences of decisions

  • Monte Carlo Tree Search (MCTS): Simulate future action sequences for large decision spaces

  • Multi-Armed Bandit: Balance exploration vs exploitation in action selection

  • Bayesian Optimization: Optimize decisions with probabilistic inference

  • Hidden Markov Models (HMMs): Infer latent states affecting decision outcomes

Each algorithm provides a systematic approach to handling uncertainty in decision-making.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
algorithmYes
problemYes
parametersYes
resultNo

Implementation Reference

  • index.js:73-119 (handler)
    The processAlgorithm method executes the core tool logic: validates input, formats output, generates algorithm-specific summaries, logs formatted output, and returns a structured JSON response or error.
    processAlgorithm(input) { try { const validatedInput = this.validateStochasticData(input); const formattedOutput = this.formatOutput(validatedInput); console.error(formattedOutput); let summary = ''; switch (validatedInput.algorithm) { case 'mdp': summary = this.mdpOneLineSummary(validatedInput.parameters); break; case 'mcts': summary = this.mctsOneLineSummary(validatedInput.parameters); break; case 'bandit': summary = this.banditOneLineSummary(validatedInput.parameters); break; case 'bayesian': summary = this.bayesianOneLineSummary(validatedInput.parameters); break; case 'hmm': summary = this.hmmOneLineSummary(validatedInput.parameters); break; } return { content: [{ type: "text", text: JSON.stringify({ algorithm: validatedInput.algorithm, status: 'success', summary, hasResult: !!validatedInput.result }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ error: error instanceof Error ? error.message : String(error), status: 'failed' }, null, 2) }], isError: true }; } }
  • Defines the stochasticalgorithm tool including name, description, and detailed inputSchema for validation.
    const STOCHASTIC_TOOL = { name: "stochasticalgorithm", description: `A tool for applying stochastic algorithms to decision-making problems. Supports various algorithms including: - Markov Decision Processes (MDPs): Optimize policies over long sequences of decisions - Monte Carlo Tree Search (MCTS): Simulate future action sequences for large decision spaces - Multi-Armed Bandit: Balance exploration vs exploitation in action selection - Bayesian Optimization: Optimize decisions with probabilistic inference - Hidden Markov Models (HMMs): Infer latent states affecting decision outcomes Each algorithm provides a systematic approach to handling uncertainty in decision-making.`, inputSchema: { type: "object", properties: { algorithm: { type: "string", enum: [ "mdp", "mcts", "bandit", "bayesian", "hmm" ] }, problem: { type: "string" }, parameters: { type: "object", additionalProperties: true }, result: { type: "string" } }, required: ["algorithm", "problem", "parameters"] } };
  • index.js:164-168 (registration)
    Registers the stochasticalgorithm tool in the MCP server's capabilities.
    capabilities: { tools: { stochasticalgorithm: STOCHASTIC_TOOL }, },
  • The CallToolRequestSchema handler dispatches requests for 'stochasticalgorithm' to the processAlgorithm method.
    server.setRequestHandler(CallToolRequestSchema, async (request) => { switch (request.params.name) { case "stochasticalgorithm": return stochasticServer.processAlgorithm(request.params.arguments); default: throw new McpError(ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}`); }
  • index.js:172-174 (registration)
    The ListToolsRequestSchema handler advertises the stochasticalgorithm tool.
    server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [STOCHASTIC_TOOL], }));

Other Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chirag127/Stochastic-Thinking-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server