Skip to main content
Glama

Stochastic Thinking MCP Server

by chirag127
test.js3.94 kB
#!/usr/bin/env node import { Client } from "@modelcontextprotocol/sdk/client/index.js"; import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js"; async function main() { // Create a client transport that connects to the server const transport = new StdioClientTransport({ command: "node", args: ["index.js"], }); // Create a client const client = new Client({ name: "stochastic-thinking-test-client", version: "0.1.0", }); try { // Connect to the server await client.connect(transport); console.log("Connected to server"); // List available tools const tools = await client.listTools(); console.log("Available tools:", JSON.stringify(tools, null, 2)); // Test MDP algorithm console.log("\nTesting MDP algorithm..."); const mdpResult = await client.callTool({ name: "stochasticalgorithm", arguments: { algorithm: "mdp", problem: "Optimize route selection for delivery vehicles", parameters: { states: 10, gamma: 0.95, learningRate: 0.1, }, }, }); console.log("MDP Result:", JSON.stringify(mdpResult, null, 2)); // Test MCTS algorithm console.log("\nTesting MCTS algorithm..."); const mctsResult = await client.callTool({ name: "stochasticalgorithm", arguments: { algorithm: "mcts", problem: "Chess move selection", parameters: { simulations: 1000, explorationConstant: 1.4, maxDepth: 10, }, }, }); console.log("MCTS Result:", JSON.stringify(mctsResult, null, 2)); // Test Bandit algorithm console.log("\nTesting Bandit algorithm..."); const banditResult = await client.callTool({ name: "stochasticalgorithm", arguments: { algorithm: "bandit", problem: "A/B testing for website layouts", parameters: { strategy: "epsilon-greedy", epsilon: 0.1, arms: 5, }, }, }); console.log("Bandit Result:", JSON.stringify(banditResult, null, 2)); // Test Bayesian Optimization algorithm console.log("\nTesting Bayesian Optimization algorithm..."); const bayesianResult = await client.callTool({ name: "stochasticalgorithm", arguments: { algorithm: "bayesian", problem: "Hyperparameter tuning for machine learning model", parameters: { acquisitionFunction: "expected improvement", dimensions: 3, iterations: 50, }, }, }); console.log( "Bayesian Result:", JSON.stringify(bayesianResult, null, 2) ); // Test HMM algorithm console.log("\nTesting HMM algorithm..."); const hmmResult = await client.callTool({ name: "stochasticalgorithm", arguments: { algorithm: "hmm", problem: "Speech recognition state inference", parameters: { algorithm: "forward-backward", states: 5, observations: 100, }, }, }); console.log("HMM Result:", JSON.stringify(hmmResult, null, 2)); } catch (error) { console.error("Error:", error); } finally { // Clean up transport.close(); } } main().catch((error) => { console.error("Fatal error:", error); process.exit(1); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chirag127/Stochastic-Thinking-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server