Skip to main content
Glama

Stochastic Thinking MCP Server

by chirag127
prompt.md10 kB
create the Stochastic Thinking MCP Server smithery badge Why Stochastic Thinking Matters When AI assistants make decisions - whether writing code, solving problems, or suggesting improvements - they often fall into patterns of "local thinking", similar to how we might get stuck trying the same approach repeatedly despite poor results. This is like being trapped in a valley when there's a better solution on the next mountain over, but you can't see it from where you are. This server introduces advanced decision-making strategies that help break out of these local patterns: Instead of just looking at the immediate next step (like basic Markov chains do), these algorithms can look multiple steps ahead and consider many possible futures Rather than always picking the most obvious solution, they can strategically explore alternative approaches that might initially seem suboptimal When faced with uncertainty, they can balance the need to exploit known good solutions with the potential benefit of exploring new ones Think of it as giving your AI assistant a broader perspective - instead of just choosing the next best immediate action, it can now consider "What if I tried something completely different?" or "What might happen several steps down this path?" A Model Context Protocol (MCP) server that provides stochastic algorithms and probabilistic decision-making capabilities, extending the sequential thinking server with advanced mathematical models. Features Stochastic Algorithms Markov Decision Processes (MDPs) Optimize policies over long sequences of decisions Incorporate rewards and actions Support for Q-learning and policy gradients Configurable discount factors and state spaces Monte Carlo Tree Search (MCTS) Simulate future action sequences Balance exploration and exploitation Configurable simulation depth and exploration constants Ideal for large decision spaces Multi-Armed Bandit Models Balance exploration vs exploitation Support multiple strategies: Epsilon-greedy UCB (Upper Confidence Bound) Thompson Sampling Dynamic reward tracking Bayesian Optimization Optimize decisions with uncertainty Probabilistic inference models Configurable acquisition functions Continuous parameter optimization Hidden Markov Models (HMMs) Infer latent states Forward-backward algorithm State sequence prediction Emission probability modeling Algorithm Selection Guide Choose the appropriate algorithm based on your problem characteristics: Markov Decision Processes (MDPs) Best for: Sequential decision-making problems Problems with clear state transitions Scenarios with defined rewards Long-term optimization needs Monte Carlo Tree Search (MCTS) Best for: Game playing and strategic planning Large decision spaces When simulation is possible Real-time decision making Multi-Armed Bandit Best for: A/B testing Resource allocation Online advertising Quick adaptation needs Bayesian Optimization Best for: Hyperparameter tuning Expensive function optimization Continuous parameter spaces When uncertainty matters Hidden Markov Models (HMMs) Best for: Time series analysis Pattern recognition State inference Sequential data modeling the code is as follows: #!/usr/bin/env node import { Server } from "@modelcontextprotocol/sdk/server/index.js"; import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; import { CallToolRequestSchema, ListToolsRequestSchema, McpError, ErrorCode, } from "@modelcontextprotocol/sdk/types.js"; // Stochastic Algorithm Implementations class StochasticServer { validateStochasticData(input) { const data = input; if (!data.algorithm || typeof data.algorithm !== 'string') { throw new Error('Invalid algorithm: must be a string'); } if (!data.problem || typeof data.problem !== 'string') { throw new Error('Invalid problem: must be a string'); } if (!data.parameters || typeof data.parameters !== 'object') { throw new Error('Invalid parameters: must be an object'); } return { algorithm: data.algorithm, problem: data.problem, parameters: data.parameters, result: typeof data.result === 'string' ? data.result : undefined }; } formatOutput(data) { const { algorithm, problem, parameters, result } = data; const border = '─'.repeat(Math.max(algorithm.length + 20, problem.length + 4)); let output = ` ┌${border}┐ │ 🎲 Algorithm: ${algorithm.padEnd(border.length - 13)} │ ├${border}┤ │ Problem: ${problem.padEnd(border.length - 10)} │ ├${border}┤ │ Parameters:${' '.repeat(border.length - 12)} │`; for (const [key, value] of Object.entries(parameters)) { output += `\n│ • ${key}: ${String(value).padEnd(border.length - key.length - 4)} │`; } if (result) { output += `\n├${border}┤ │ Result: ${result.padEnd(border.length - 9)} │`; } output += `\n└${border}┘`; return output; } mdpOneLineSummary(params) { return `Optimized policy over ${params.states || 'N'} states with discount factor ${params.gamma || 0.9}`; } mctsOneLineSummary(params) { return `Explored ${params.simulations || 1000} paths with exploration constant ${params.explorationConstant || 1.4}`; } banditOneLineSummary(params) { return `Selected optimal arm with ${params.strategy || 'epsilon-greedy'} strategy (ε=${params.epsilon || 0.1})`; } bayesianOneLineSummary(params) { return `Optimized objective with ${params.acquisitionFunction || 'expected improvement'} acquisition`; } hmmOneLineSummary(params) { return `Inferred hidden states using ${params.algorithm || 'forward-backward'} algorithm`; } processAlgorithm(input) { try { const validatedInput = this.validateStochasticData(input); const formattedOutput = this.formatOutput(validatedInput); console.error(formattedOutput); let summary = ''; switch (validatedInput.algorithm) { case 'mdp': summary = this.mdpOneLineSummary(validatedInput.parameters); break; case 'mcts': summary = this.mctsOneLineSummary(validatedInput.parameters); break; case 'bandit': summary = this.banditOneLineSummary(validatedInput.parameters); break; case 'bayesian': summary = this.bayesianOneLineSummary(validatedInput.parameters); break; case 'hmm': summary = this.hmmOneLineSummary(validatedInput.parameters); break; } return { content: [{ type: "text", text: JSON.stringify({ algorithm: validatedInput.algorithm, status: 'success', summary, hasResult: !!validatedInput.result }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ error: error instanceof Error ? error.message : String(error), status: 'failed' }, null, 2) }], isError: true }; } } } // Tool Definition const STOCHASTIC_TOOL = { name: "stochasticalgorithm", description: `A tool for applying stochastic algorithms to decision-making problems. Supports various algorithms including: - Markov Decision Processes (MDPs): Optimize policies over long sequences of decisions - Monte Carlo Tree Search (MCTS): Simulate future action sequences for large decision spaces - Multi-Armed Bandit: Balance exploration vs exploitation in action selection - Bayesian Optimization: Optimize decisions with probabilistic inference - Hidden Markov Models (HMMs): Infer latent states affecting decision outcomes Each algorithm provides a systematic approach to handling uncertainty in decision-making.`, inputSchema: { type: "object", properties: { algorithm: { type: "string", enum: [ "mdp", "mcts", "bandit", "bayesian", "hmm" ] }, problem: { type: "string" }, parameters: { type: "object", additionalProperties: true }, result: { type: "string" } }, required: ["algorithm", "problem", "parameters"] } }; // Server Instance const stochasticServer = new StochasticServer(); const server = new Server({ name: "stochastic-thinking-server", version: "0.1.0", }, { capabilities: { tools: { stochasticalgorithm: STOCHASTIC_TOOL }, }, }); // Request Handlers server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [STOCHASTIC_TOOL], })); server.setRequestHandler(CallToolRequestSchema, async (request) => { switch (request.params.name) { case "stochasticalgorithm": return stochasticServer.processAlgorithm(request.params.arguments); default: throw new McpError(ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}`); } }); async function runServer() { const transport = new StdioServerTransport(); await server.connect(transport); console.error("Stochastic Thinking MCP Server running on stdio"); } runServer().catch((error) => { console.error("Fatal error running server:", error); process.exit(1); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chirag127/Stochastic-Thinking-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server