Skip to main content
Glama

Stochastic Thinking MCP Server

by chirag127
index.js6.83 kB
#!/usr/bin/env node import { Server } from "@modelcontextprotocol/sdk/server/index.js"; import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; import { CallToolRequestSchema, ListToolsRequestSchema, McpError, ErrorCode } from "@modelcontextprotocol/sdk/types.js"; // Stochastic Algorithm Implementations class StochasticServer { validateStochasticData(input) { const data = input; if (!data.algorithm || typeof data.algorithm !== 'string') { throw new Error('Invalid algorithm: must be a string'); } if (!data.problem || typeof data.problem !== 'string') { throw new Error('Invalid problem: must be a string'); } if (!data.parameters || typeof data.parameters !== 'object') { throw new Error('Invalid parameters: must be an object'); } return { algorithm: data.algorithm, problem: data.problem, parameters: data.parameters, result: typeof data.result === 'string' ? data.result : undefined }; } formatOutput(data) { const { algorithm, problem, parameters, result } = data; const border = '─'.repeat(Math.max(algorithm.length + 20, problem.length + 4)); let output = ` ┌${border}┐ │ 🎲 Algorithm: ${algorithm.padEnd(border.length - 13)} │ ├${border}┤ │ Problem: ${problem.padEnd(border.length - 10)} │ ├${border}┤ │ Parameters:${' '.repeat(border.length - 12)} │`; for (const [key, value] of Object.entries(parameters)) { output += `\n│ • ${key}: ${String(value).padEnd(border.length - key.length - 4)} │`; } if (result) { output += `\n├${border}┤ │ Result: ${result.padEnd(border.length - 9)} │`; } output += `\n└${border}┘`; return output; } mdpOneLineSummary(params) { return `Optimized policy over ${params.states || 'N'} states with discount factor ${params.gamma || 0.9}`; } mctsOneLineSummary(params) { return `Explored ${params.simulations || 1000} paths with exploration constant ${params.explorationConstant || 1.4}`; } banditOneLineSummary(params) { return `Selected optimal arm with ${params.strategy || 'epsilon-greedy'} strategy (ε=${params.epsilon || 0.1})`; } bayesianOneLineSummary(params) { return `Optimized objective with ${params.acquisitionFunction || 'expected improvement'} acquisition`; } hmmOneLineSummary(params) { return `Inferred hidden states using ${params.algorithm || 'forward-backward'} algorithm`; } processAlgorithm(input) { try { const validatedInput = this.validateStochasticData(input); const formattedOutput = this.formatOutput(validatedInput); console.error(formattedOutput); let summary = ''; switch (validatedInput.algorithm) { case 'mdp': summary = this.mdpOneLineSummary(validatedInput.parameters); break; case 'mcts': summary = this.mctsOneLineSummary(validatedInput.parameters); break; case 'bandit': summary = this.banditOneLineSummary(validatedInput.parameters); break; case 'bayesian': summary = this.bayesianOneLineSummary(validatedInput.parameters); break; case 'hmm': summary = this.hmmOneLineSummary(validatedInput.parameters); break; } return { content: [{ type: "text", text: JSON.stringify({ algorithm: validatedInput.algorithm, status: 'success', summary, hasResult: !!validatedInput.result }, null, 2) }] }; } catch (error) { return { content: [{ type: "text", text: JSON.stringify({ error: error instanceof Error ? error.message : String(error), status: 'failed' }, null, 2) }], isError: true }; } } } // Tool Definition const STOCHASTIC_TOOL = { name: "stochasticalgorithm", description: `A tool for applying stochastic algorithms to decision-making problems. Supports various algorithms including: - Markov Decision Processes (MDPs): Optimize policies over long sequences of decisions - Monte Carlo Tree Search (MCTS): Simulate future action sequences for large decision spaces - Multi-Armed Bandit: Balance exploration vs exploitation in action selection - Bayesian Optimization: Optimize decisions with probabilistic inference - Hidden Markov Models (HMMs): Infer latent states affecting decision outcomes Each algorithm provides a systematic approach to handling uncertainty in decision-making.`, inputSchema: { type: "object", properties: { algorithm: { type: "string", enum: [ "mdp", "mcts", "bandit", "bayesian", "hmm" ] }, problem: { type: "string" }, parameters: { type: "object", additionalProperties: true }, result: { type: "string" } }, required: ["algorithm", "problem", "parameters"] } }; // Server Instance const stochasticServer = new StochasticServer(); const server = new Server({ name: "stochastic-thinking-server", version: "0.1.0", }, { capabilities: { tools: { stochasticalgorithm: STOCHASTIC_TOOL }, }, }); // Request Handlers server.setRequestHandler(ListToolsRequestSchema, async () => ({ tools: [STOCHASTIC_TOOL], })); server.setRequestHandler(CallToolRequestSchema, async (request) => { switch (request.params.name) { case "stochasticalgorithm": return stochasticServer.processAlgorithm(request.params.arguments); default: throw new McpError(ErrorCode.MethodNotFound, `Unknown tool: ${request.params.name}`); } }); async function runServer() { const transport = new StdioServerTransport(); await server.connect(transport); console.error("Stochastic Thinking MCP Server running on stdio"); } runServer().catch((error) => { console.error("Fatal error running server:", error); process.exit(1); });

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/chirag127/Stochastic-Thinking-MCP-Server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server