Skip to main content
Glama

Codex MCP Server

by cexll
faq.md9.83 kB
# Frequently Asked Questions ## General Questions ### What is Codex MCP Tool? Codex MCP Tool is a Model Context Protocol (MCP) server that bridges OpenAI's Codex CLI with MCP-compatible clients like Claude Desktop and Claude Code. It enables seamless AI-powered code analysis, generation, and brainstorming directly within your development environment. ### Why use Codex MCP Tool instead of Codex CLI directly? **Benefits of using Codex MCP Tool:** - **Non-interactive execution** - No manual prompts or confirmations needed - **Integration** - Works seamlessly with Claude Desktop/Code - **File references** - Use @ syntax to include files easily - **Structured output** - Get organized responses with changeMode - **Progress tracking** - Real-time updates for long operations - **Multiple tools** - Access specialized tools beyond basic prompts ### Which AI models are supported? Currently supported OpenAI models: - **GPT-5** - 400K context, best for complex tasks - **o3** - 200K context, advanced reasoning - **o4-mini** - 200K context, fast and cost-effective ### Is this an official OpenAI tool? No, this is a community-developed integration tool. It uses the official Codex CLI but is not directly affiliated with or endorsed by OpenAI. ## Installation & Setup ### What are the prerequisites? 1. **Node.js** >= 18.0.0 2. **Codex CLI** installed and authenticated 3. **MCP client** (Claude Desktop or Claude Code) 4. **OpenAI API access** with appropriate model permissions ### How do I install Codex MCP Tool? **For Claude Code (recommended):** ```bash claude mcp add codex-cli -- npx -y @trishchuk/codex-mcp-tool ``` **For Claude Desktop:** ```bash npm install -g @trishchuk/codex-mcp-tool ``` Then add to your configuration file. ### Where is the configuration file located? **Claude Desktop configuration locations:** - **macOS:** `~/Library/Application Support/Claude/claude_desktop_config.json` - **Windows:** `%APPDATA%\Claude\claude_desktop_config.json` - **Linux:** `~/.config/claude/claude_desktop_config.json` ### How do I verify the installation? Test with these commands in your MCP client: ```javascript // Test connectivity /codex-cli:ping "Hello" // Check help /codex-cli:help // Simple task /codex-cli:ask-codex "explain what Python decorators are" ``` ## Usage Questions ### How do I reference files in my prompts? Use the @ syntax: ```javascript // Single file 'explain @src/main.ts'; // Multiple files 'compare @src/old.ts @src/new.ts'; // Glob patterns 'review @src/*.ts'; 'analyze @src/**/*.ts'; // With paths containing spaces (use quotes) "@\"My Documents/project/file.ts\""; ``` ### What's the difference between sandbox modes? | Mode | Read | Write | Delete | Execute | Use Case | | -------------------- | ---- | ----- | ------ | ------- | ----------------------- | | `read-only` | ✅ | ❌ | ❌ | ❌ | Analysis, reviews | | `workspace-write` | ✅ | ✅ | ⚠️ | ❌ | Refactoring, generation | | `danger-full-access` | ✅ | ✅ | ✅ | ✅ | Full automation | ### How do I use different models? Specify the model in your request: ```javascript { "name": "ask-codex", "arguments": { "prompt": "your task", "model": "gpt-5" // or "o3", "o4-mini" } } ``` ### What is changeMode? ChangeMode returns structured file edits instead of conversational responses: ```javascript { "prompt": "refactor this code", "changeMode": true } // Returns OLD/NEW edit blocks that can be directly applied ``` ### How do I handle large responses? For large changeMode responses, use chunking: ```javascript // Initial request returns cacheKey { "prompt": "large refactor", "changeMode": true } // Fetch subsequent chunks { "cacheKey": "abc123", "chunkIndex": 2 } ``` ## Tools & Features ### What tools are available? 1. **ask-codex** - Execute Codex commands with file references 2. **brainstorm** - Generate ideas with structured methodologies 3. **ping** - Test connectivity 4. **help** - Show Codex CLI help 5. **fetch-chunk** - Retrieve cached response chunks 6. **timeout-test** - Test long-running operations ### How does the brainstorm tool work? The brainstorm tool offers multiple methodologies: ```javascript { "prompt": "ways to improve performance", "methodology": "scamper", // or "divergent", "convergent", etc. "domain": "backend", "ideaCount": 10, "includeAnalysis": true } ``` ### Can I create custom tools? Yes! Create a new tool in `src/tools/`: ```typescript // src/tools/my-tool.tool.ts export const myTool: UnifiedTool = { name: 'my-tool', description: 'My custom tool', schema: MyToolSchema, async execute(args, progress) { // Implementation }, }; ``` ### How do progress notifications work? Long-running operations send progress updates every 25 seconds: ```javascript // In tool implementation progress?.('Processing file 1 of 10...'); progress?.('Analyzing dependencies...'); progress?.('Generating output...'); ``` ## Security & Privacy ### Is my code sent to OpenAI? Yes, when you use Codex MCP Tool, your prompts and referenced files are sent to OpenAI's API for processing. Ensure you: - Don't include sensitive data - Review OpenAI's data usage policies - Use appropriate sandbox modes ### How do approval policies work? | Policy | Description | Use Case | | ------------ | ----------------------- | ------------------ | | `never` | No approvals needed | Trusted automation | | `on-request` | Approve each action | Careful operation | | `on-failure` | Approve on errors | Semi-automated | | `untrusted` | Always require approval | Maximum safety | ### Can I use this in production? Codex MCP Tool is designed for development environments. For production: - Review security implications - Implement proper access controls - Monitor API usage and costs - Consider rate limiting ### Are API keys stored securely? API keys should be: - Set via environment variables (`OPENAI_API_KEY`) - Never committed to version control - Managed through Codex CLI authentication - Rotated regularly ## Troubleshooting ### Why is the tool not responding? Check: 1. Codex CLI is installed: `codex --version` 2. Authentication is valid: `codex auth status` 3. MCP server is running: restart your client 4. Configuration syntax is correct ### How do I enable debug logging? ```bash # Enable all debug output DEBUG=* npx @trishchuk/codex-mcp-tool # Enable specific modules DEBUG=codex-mcp:* npx @trishchuk/codex-mcp-tool ``` ### What if I get "model not available"? 1. Check available models: `codex models list` 2. Verify API access permissions 3. Try a different model (e.g., `o4-mini`) 4. Check OpenAI account status ### How do I report bugs? 1. Check [existing issues](https://github.com/x51xxx/codex-mcp-tool/issues) 2. Gather diagnostic information 3. Use the [bug report template](https://github.com/x51xxx/codex-mcp-tool/issues/new?template=bug_report.md) 4. Include reproducible steps ## Advanced Topics ### Can I use multiple MCP servers simultaneously? Yes, configure multiple servers in your MCP client: ```json { "mcpServers": { "codex-cli": { ... }, "another-server": { ... } } } ``` ### How do I contribute to the project? See our [Contributing Guide](https://github.com/x51xxx/codex-mcp-tool/blob/main/CONTRIBUTING.md): 1. Fork the repository 2. Create a feature branch 3. Make your changes 4. Submit a pull request ### What's the difference between Codex and GPT models? - **Codex** - Specialized for code generation (deprecated) - **GPT-5** - General purpose with code capabilities - **o3/o4** - Optimized models with reasoning focus ### Can I use this with other AI providers? Currently, Codex MCP Tool is designed for OpenAI's models via Codex CLI. For other providers, consider: - Forking and adapting the codebase - Using different MCP servers - Contributing multi-provider support ## Performance & Optimization ### How can I improve response times? 1. **Use faster models:** `o4-mini` is fastest 2. **Be specific with file references:** Avoid broad globs 3. **Enable caching:** Reuse common analyses 4. **Process in batches:** Break large tasks ### What are the context limits? | Model | Context Window | Recommended Max | | ------- | -------------- | --------------- | | GPT-5 | 400K tokens | 350K tokens | | o3 | 200K tokens | 180K tokens | | o4-mini | 200K tokens | 180K tokens | ### How do I estimate costs? ```javascript // Rough cost calculation tokens = prompt_length + file_content_length + response_length; cost = (tokens / 1000) * model_price_per_1k; // Model prices (as of 2025) // GPT-5: $0.015/1K input, $0.060/1K output // o3: $0.015/1K tokens // o4-mini: $0.00015/1K input, $0.0006/1K output ``` ## Future & Roadmap ### What features are planned? - Streaming responses - Local model support - Enhanced caching - Web UI interface - Custom model configurations - Batch processing - Team collaboration features ### How do I request features? 1. Check [existing requests](https://github.com/x51xxx/codex-mcp-tool/issues?label=enhancement) 2. Use the [feature request template](https://github.com/x51xxx/codex-mcp-tool/issues/new?template=feature_request.md) 3. Provide use cases and examples ### Is there a roadmap? Check our [GitHub Projects](https://github.com/x51xxx/codex-mcp-tool/projects) for planned features and progress. ## Related Resources - [Installation Guide](../getting-started.md) - [Troubleshooting Guide](./troubleshooting.md) - [API Reference](../api/tools/ask-codex.md) - [Examples](../examples/basic-usage.md) - [Contributing](https://github.com/x51xxx/codex-mcp-tool/blob/main/CONTRIBUTING.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cexll/codex-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server