Skip to main content
Glama

Sample Data MCP

A Model Context Protocol (MCP) server that generates fixed-length test data based on field specifications. This tool helps developers create realistic test datasets with customizable field types and formats.

Features

  • Generate fixed-length test data records

  • Support for multiple field types:

    • string: Random names using Faker library

    • enum: Random selection from provided values

    • integer: Random integers within specified range

    • date: Random dates with customizable format

    • filler: Space padding fields

  • Configurable field length and constraints

  • MCP-compatible for integration with Claude Code

Installation

Prerequisites

Install with UV

  1. Clone or download this project

  2. Navigate to the project directory

  3. Install dependencies:

    uv sync

Install into Claude Code

  1. Add the MCP server to your Claude Code configuration. Edit your MCP settings file (typically ~/.config/claude-code/mcp_servers.json or similar):

    { "mcpServers": { "sample-data-mcp": { "command": "uv", "args": ["run", "/path/to/sample-data-mcp/main.py"], "cwd": "/path/to/sample-data-mcp" } } }
  2. Restart Claude Code to load the new MCP server

Usage

Once installed, you can use the generate_test_data_tool through Claude Code to create test data:

Example Field Specification

fields = [ { "name": "customer_id", "type": "integer", "length": 8, "min": 1000, "max": 9999 }, { "name": "customer_name", "type": "string", "length": 25 }, { "name": "status", "type": "enum", "length": 6, "values": ["ACTIVE", "INACTIVE", "PENDING"] }, { "name": "signup_date", "type": "date", "length": 8, "format": "%Y%m%d" }, { "name": "filler", "type": "filler", "length": 5 } ]

Field Types

Type

Description

Required Fields

Optional Fields

string

Random names

name, type, length

-

enum

Random selection from list

name, type, length, values

-

integer

Random integer

name, type, length

min, max

date

Random date

name, type, length

format

filler

Space padding

name, type, length

-

Development

Testing Locally

uv run mcp dev main.py

Dependencies

  • faker: For generating realistic fake data

  • mcp: Model Context Protocol implementation

  • pydantic: Data validation and settings management

License

This project is provided as-is for educational and development purposes.

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cdelashmutt-pivotal/sample-data-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server