// Copyright 2025 Chris Bunting
// Brief: Context-aware analysis service for MCP Code Analysis & Quality Server
// Scope: Manages context-sensitive analysis with adaptive filtering and prioritization
import { EventEmitter } from 'events';
import {
AnalysisContext,
UnifiedAnalysisResult,
LoggerInterface,
CacheInterface,
PriorityLevel,
SeverityLevel
} from '@mcp-code-analysis/shared-types';
export interface ContextAwareAnalysisConfig {
enableAdaptiveFiltering: boolean;
enableContextPrioritization: boolean;
enableCrossProjectAnalysis: boolean;
maxContextDepth: number;
contextRetention: number;
relevanceThreshold: number;
enableRealTimeAdaptation: boolean;
enablePredictiveAnalysis: boolean;
}
export interface ContextAnalysisRequest {
projectId: string;
analysisResults: UnifiedAnalysisResult[];
context: ExtendedAnalysisContext;
options: AnalysisOptions;
}
export interface ContextAnalysisResponse {
success: boolean;
contextualResults: ContextualResult[];
filteredResults: FilteredResult[];
prioritizedResults: PrioritizedResult[];
crossProjectInsights: CrossProjectInsight[];
recommendations: ContextRecommendation[];
metadata: AnalysisMetadata;
}
export interface ExtendedAnalysisContext extends AnalysisContext {
temporalContext: TemporalAnalysisContext;
spatialContext: SpatialAnalysisContext;
domainContext: DomainAnalysisContext;
teamContext: TeamAnalysisContext;
projectContext: ProjectAnalysisContext;
userContext: UserAnalysisContext;
}
export interface ContextualResult {
id: string;
originalResult: UnifiedAnalysisResult;
contextScore: number;
relevanceScore: number;
confidence: number;
contextFactors: ContextFactor[];
adaptations: ContextAdaptation[];
insights: ContextInsight[];
}
export interface FilteredResult {
id: string;
originalResult: UnifiedAnalysisResult;
filterReason: FilterReason;
relevance: number;
context: FilterContext;
recommendation: FilterRecommendation;
}
export interface PrioritizedResult {
id: string;
originalResult: UnifiedAnalysisResult;
priority: PriorityLevel;
urgency: UrgencyLevel;
impact: ImpactAssessment;
dependencies: string[];
timeline: PriorityTimeline;
}
export interface CrossProjectInsight {
id: string;
type: InsightType;
sourceProjects: string[];
targetProjects: string[];
pattern: CrossProjectPattern;
impact: CrossProjectImpact;
recommendation: CrossProjectRecommendation;
confidence: number;
}
export interface ContextRecommendation {
id: string;
type: RecommendationType;
description: string;
priority: PriorityLevel;
effort: number;
expectedOutcome: string;
context: RecommendationContext;
confidence: number;
}
export interface AnalysisMetadata {
totalResults: number;
contextualResults: number;
filteredResults: number;
prioritizedResults: number;
crossProjectInsights: number;
averageContextScore: number;
averageRelevance: number;
processingTime: number;
adaptationsApplied: boolean;
}
export interface TemporalAnalysisContext {
timeframe: Timeframe;
urgency: UrgencyLevel;
deadline: Date | null;
availableTime: number;
historicalPerformance: HistoricalPerformance[];
seasonalPatterns: SeasonalPattern[];
}
export interface SpatialAnalysisContext {
files: string[];
modules: string[];
components: string[];
architectures: string[];
dependencies: DependencyMap;
coupling: CouplingAnalysis;
}
export interface DomainAnalysisContext {
businessDomain: string;
technicalDomain: string;
industry: string;
regulations: string[];
standards: string[];
bestPractices: string[];
}
export interface TeamAnalysisContext {
teamSize: number;
experience: ExperienceLevel;
expertise: ExpertiseDistribution;
collaboration: CollaborationMetrics;
productivity: ProductivityMetrics;
}
export interface ProjectAnalysisContext {
phase: ProjectPhase;
complexity: number;
maturity: ProjectMaturity;
methodology: Methodology;
risk: RiskAssessment;
}
export interface UserAnalysisContext {
role: UserRole;
expertise: ExpertiseLevel;
preferences: UserPreferences;
focus: FocusArea;
cognitiveLoad: CognitiveLoad;
}
export interface ContextFactor {
id: string;
type: FactorType;
name: string;
value: number;
weight: number;
description: string;
source: FactorSource;
}
export interface ContextAdaptation {
id: string;
type: AdaptationType;
originalValue: any;
adaptedValue: any;
reason: string;
effectiveness: number;
}
export interface ContextInsight {
id: string;
type: InsightType;
description: string;
confidence: number;
evidence: string[];
implications: string[];
}
export interface FilterContext {
reason: FilterReason;
contextScore: number;
relevanceScore: number;
threshold: number;
factors: string[];
}
export interface FilterRecommendation {
action: FilterAction;
reasoning: string;
confidence: number;
timeline: Date;
}
export interface ImpactAssessment {
technicalImpact: number;
businessImpact: number;
userImpact: number;
teamImpact: number;
overallImpact: number;
timeline: ImpactTimeline;
}
export interface PriorityTimeline {
immediate: string[];
shortTerm: string[];
mediumTerm: string[];
longTerm: string[];
}
export interface CrossProjectPattern {
type: PatternType;
description: string;
frequency: number;
consistency: number;
impact: number;
}
export interface CrossProjectImpact {
technical: number;
business: number;
operational: number;
strategic: number;
}
export interface CrossProjectRecommendation {
action: CrossProjectAction;
description: string;
priority: PriorityLevel;
effort: number;
expectedOutcome: string;
confidence: number;
}
export interface RecommendationContext {
projects: string[];
teams: string[];
technologies: string[];
domains: string[];
timeframe: Timeframe;
}
export interface HistoricalPerformance {
period: Timeframe;
metrics: PerformanceMetrics;
trends: Trend[];
anomalies: Anomaly[];
}
export interface SeasonalPattern {
type: SeasonalType;
period: Timeframe;
pattern: PatternData;
confidence: number;
}
export interface DependencyMap {
direct: Dependency[];
indirect: Dependency[];
circular: Dependency[];
external: Dependency[];
}
export interface CouplingAnalysis {
structural: number;
functional: number;
data: number;
control: number;
}
export interface ExpertiseDistribution {
beginner: number;
intermediate: number;
advanced: number;
expert: number;
}
export interface CollaborationMetrics {
communication: number;
coordination: number;
knowledgeSharing: number;
conflictResolution: number;
}
export interface ProductivityMetrics {
velocity: number;
quality: number;
efficiency: number;
innovation: number;
}
export interface ProjectMaturity {
level: MaturityLevel;
practices: string[];
metrics: MaturityMetrics;
}
export interface RiskAssessment {
technical: number;
business: number;
operational: number;
strategic: number;
mitigation: string[];
}
export interface UserPreferences {
detailLevel: DetailLevel;
visualization: VisualizationType;
notification: NotificationPreference;
collaboration: CollaborationPreference;
}
export interface FocusArea {
type: FocusType;
target: string;
priority: number;
duration: number;
}
export interface CognitiveLoad {
current: number;
capacity: number;
factors: CognitiveFactor[];
}
export interface PerformanceMetrics {
throughput: number;
quality: number;
efficiency: number;
satisfaction: number;
}
export interface Trend {
direction: TrendDirection;
magnitude: number;
significance: number;
timeframe: Timeframe;
}
export interface Anomaly {
type: AnomalyType;
severity: SeverityLevel;
description: string;
timestamp: Date;
impact: number;
}
export interface PatternData {
values: number[];
timestamps: Date[];
pattern: string;
confidence: number;
}
export interface Dependency {
source: string;
target: string;
type: DependencyType;
strength: number;
impact: number;
}
export interface MaturityMetrics {
coverage: number;
consistency: number;
effectiveness: number;
efficiency: number;
}
export interface ImpactTimeline {
immediate: number;
shortTerm: number;
mediumTerm: number;
longTerm: number;
}
export interface AnalysisOptions {
maxDepth: number;
includeCrossProject: boolean;
includePredictive: boolean;
adaptationStrategy: AdaptationStrategy;
prioritizationStrategy: PrioritizationStrategy;
}
export enum FactorType {
TEMPORAL = 'temporal',
SPATIAL = 'spatial',
DOMAIN = 'domain',
TEAM = 'team',
PROJECT = 'project',
USER = 'user',
TECHNICAL = 'technical',
BUSINESS = 'business'
}
export enum FactorSource {
ANALYSIS = 'analysis',
METRICS = 'metrics',
USER_INPUT = 'user-input',
HISTORICAL = 'historical',
PREDICTIVE = 'predictive'
}
export enum AdaptationType {
SIMPLIFICATION = 'simplification',
ABSTRACTION = 'abstraction',
PRIORITIZATION = 'prioritization',
FILTERING = 'filtering',
AGGREGATION = 'aggregation'
}
export enum InsightType {
PATTERN = 'pattern',
ANOMALY = 'anomaly',
CORRELATION = 'correlation',
PREDICTION = 'prediction',
RECOMMENDATION = 'recommendation'
}
export enum FilterReason {
LOW_RELEVANCE = 'low-relevance',
HIGH_COMPLEXITY = 'high-complexity',
LOW_PRIORITY = 'low-priority',
CONTEXT_MISMATCH = 'context-mismatch',
DUPLICATE = 'duplicate',
OUTDATED = 'outdated'
}
export enum FilterAction {
IGNORE = 'ignore',
DEFER = 'defer',
SIMPLIFY = 'simplify',
ESCALATE = 'escalate',
AUTOMATE = 'automate'
}
export enum RecommendationType {
ACTION = 'action',
IMPROVEMENT = 'improvement',
OPTIMIZATION = 'optimization',
PREVENTION = 'prevention',
AUTOMATION = 'automation'
}
export enum Timeframe {
IMMEDIATE = 'immediate',
SHORT_TERM = 'short-term',
MEDIUM_TERM = 'medium-term',
LONG_TERM = 'long-term'
}
export enum UrgencyLevel {
LOW = 'low',
MEDIUM = 'medium',
HIGH = 'high',
CRITICAL = 'critical'
}
export enum ExperienceLevel {
JUNIOR = 'junior',
MID = 'mid',
SENIOR = 'senior',
EXPERT = 'expert'
}
export enum ProjectPhase {
PLANNING = 'planning',
DEVELOPMENT = 'development',
TESTING = 'testing',
DEPLOYMENT = 'deployment',
MAINTENANCE = 'maintenance'
}
export enum MaturityLevel {
INITIAL = 'initial',
MANAGED = 'managed',
DEFINED = 'defined',
QUANTIFIED = 'quantified',
OPTIMIZED = 'optimized'
}
export enum Methodology {
AGILE = 'agile',
WATERFALL = 'waterfall',
HYBRID = 'hybrid',
DEVOPS = 'devops',
LEAN = 'lean'
}
export enum UserRole {
DEVELOPER = 'developer',
ARCHITECT = 'architect',
QA_ENGINEER = 'qa-engineer',
DEVOPS_ENGINEER = 'devops-engineer',
PRODUCT_MANAGER = 'product-manager',
PROJECT_MANAGER = 'project-manager'
}
export enum DetailLevel {
OVERVIEW = 'overview',
BASIC = 'basic',
DETAILED = 'detailed',
COMPREHENSIVE = 'comprehensive'
}
export enum VisualizationType {
TEXT = 'text',
GRAPH = 'graph',
TABLE = 'table',
DIAGRAM = 'diagram'
}
export enum NotificationPreference {
IMMEDIATE = 'immediate',
DIGEST = 'digest',
WEEKLY = 'weekly',
NONE = 'none'
}
export enum CollaborationPreference {
INDEPENDENT = 'independent',
COLLABORATIVE = 'collaborative',
PAIR_PROGRAMMING = 'pair-programming',
MOB_PROGRAMMING = 'mob-programming'
}
export enum FocusType {
CODE = 'code',
ARCHITECTURE = 'architecture',
BUSINESS_LOGIC = 'business-logic',
DATA = 'data',
API = 'api',
TESTING = 'testing',
DOCUMENTATION = 'documentation'
}
export enum CognitiveFactorType {
WORKING_MEMORY = 'working-memory',
ATTENTION = 'attention',
PROCESSING_SPEED = 'processing-speed',
COMPREHENSION = 'comprehension'
}
export enum TrendDirection {
IMPROVING = 'improving',
STABLE = 'stable',
DECLINING = 'declining'
}
export enum AnomalyType {
OUTLIER = 'outlier',
DEVIATION = 'deviation',
ANOMALY = 'anomaly',
EXCEPTION = 'exception'
}
export enum SeasonalType {
DAILY = 'daily',
WEEKLY = 'weekly',
MONTHLY = 'monthly',
QUARTERLY = 'quarterly',
YEARLY = 'yearly'
}
export enum DependencyType {
CODE = 'code',
DATA = 'data',
CONFIGURATION = 'configuration',
DEPLOYMENT = 'deployment',
BUSINESS = 'business'
}
export enum PatternType {
CODE_PATTERN = 'code-pattern',
ARCHITECTURAL_PATTERN = 'architectural-pattern',
BEHAVIORAL_PATTERN = 'behavioral-pattern',
PERFORMANCE_PATTERN = 'performance-pattern'
}
export enum CrossProjectAction {
SHARE = 'share',
STANDARDIZE = 'standardize',
CONSOLIDATE = 'consolidate',
INTEGRATE = 'integrate'
}
export enum AdaptationStrategy {
CONSERVATIVE = 'conservative',
MODERATE = 'moderate',
AGGRESSIVE = 'aggressive',
ADAPTIVE = 'adaptive'
}
export enum PrioritizationStrategy {
IMPACT_BASED = 'impact-based',
URGENCY_BASED = 'urgency-based',
VALUE_BASED = 'value-based',
RISK_BASED = 'risk-based'
}
export class ContextAwareAnalysisService extends EventEmitter {
private config: ContextAwareAnalysisConfig;
private cache: CacheInterface;
private logger: LoggerInterface;
private contextModels: Map<string, ContextModel> = new Map();
private analysisAlgorithms: Map<AnalysisAlgorithmType, AnalysisAlgorithm> = new Map();
private predictionAlgorithms: Map<PredictionAlgorithmType, PredictionAlgorithm> = new Map();
constructor(config: ContextAwareAnalysisConfig, cache: CacheInterface, logger: LoggerInterface) {
super();
this.config = config;
this.cache = cache;
this.logger = logger;
this.setupEventHandlers();
this.initializeAlgorithms();
}
private setupEventHandlers(): void {
this.on('context-analyzed', this.handleContextAnalyzed.bind(this));
this.on('result-filtered', this.handleResultFiltered.bind(this));
this.on('result-prioritized', this.handleResultPrioritized.bind(this));
this.on('cross-project-insight', this.handleCrossProjectInsight.bind(this));
}
private initializeAlgorithms(): void {
// Initialize analysis algorithms
this.analysisAlgorithms.set(AnalysisAlgorithmType.CONTEXTUAL, new ContextualAnalysisAlgorithm());
this.analysisAlgorithms.set(AnalysisAlgorithmType.RELEVANCE_BASED, new RelevanceBasedAnalysisAlgorithm());
this.analysisAlgorithms.set(AnalysisAlgorithmType.IMPACT_BASED, new ImpactBasedAnalysisAlgorithm());
this.analysisAlgorithms.set(AnalysisAlgorithmType.PATTERN_BASED, new PatternBasedAnalysisAlgorithm());
this.analysisAlgorithms.set(AnalysisAlgorithmType.PREDICTIVE, new PredictiveAnalysisAlgorithm());
// Initialize prediction algorithms
this.predictionAlgorithms.set(PredictionAlgorithmType.TREND_ANALYSIS, new TrendAnalysisAlgorithm());
this.predictionAlgorithms.set(PredictionAlgorithmType.ANOMALY_DETECTION, new AnomalyDetectionAlgorithm());
this.predictionAlgorithms.set(PredictionAlgorithmType.CORRELATION_ANALYSIS, new CorrelationAnalysisAlgorithm());
this.predictionAlgorithms.set(PredictionAlgorithmType.CLASSIFICATION, new ClassificationAlgorithm());
this.predictionAlgorithms.set(PredictionAlgorithmType.REGRESSION, new RegressionAlgorithm());
}
async initialize(): Promise<void> {
this.logger.info('Initializing Context-Aware Analysis Service');
// Load existing context models from cache
await this.loadContextModels();
this.logger.info('Context-Aware Analysis Service initialized successfully');
}
async analyzeWithContext(request: ContextAnalysisRequest): Promise<ContextAnalysisResponse> {
try {
this.logger.info(`Analyzing with context for project: ${request.projectId}`);
const startTime = Date.now();
// Get or create context model
let contextModel = this.contextModels.get(request.projectId);
if (!contextModel) {
contextModel = await this.createContextModel(request.projectId, request.context);
}
// Apply context-aware analysis
const contextualResults = await this.applyContextualAnalysis(request, contextModel);
// Apply adaptive filtering if enabled
let filteredResults: FilteredResult[] = [];
if (this.config.enableAdaptiveFiltering) {
filteredResults = await this.applyAdaptiveFiltering(request, contextualResults, contextModel);
}
// Apply context prioritization if enabled
let prioritizedResults: PrioritizedResult[] = [];
if (this.config.enableContextPrioritization) {
prioritizedResults = await this.applyContextPrioritization(request, contextualResults, contextModel);
}
// Apply cross-project analysis if enabled
let crossProjectInsights: CrossProjectInsight[] = [];
if (this.config.enableCrossProjectAnalysis) {
crossProjectInsights = await this.applyCrossProjectAnalysis(request, contextModel);
}
// Generate context recommendations
const recommendations = await this.generateContextRecommendations(request, contextualResults, contextModel);
// Update context model with new data
await this.updateContextModel(contextModel, request, contextualResults);
// Create response
const response: ContextAnalysisResponse = {
success: true,
contextualResults,
filteredResults,
prioritizedResults,
crossProjectInsights,
recommendations,
metadata: {
totalResults: request.analysisResults.length,
contextualResults: contextualResults.length,
filteredResults: filteredResults.length,
prioritizedResults: prioritizedResults.length,
crossProjectInsights: crossProjectInsights.length,
averageContextScore: this.calculateAverageContextScore(contextualResults),
averageRelevance: this.calculateAverageRelevance(contextualResults),
processingTime: Date.now() - startTime,
adaptationsApplied: this.config.enableAdaptiveFiltering
}
};
// Save updated context model
await this.saveContextModel(request.projectId);
this.emit('context-analyzed', {
projectId: request.projectId,
contextualResults: contextualResults.length,
filteredResults: filteredResults.length,
prioritizedResults: prioritizedResults.length
});
this.logger.info(`Successfully analyzed with context for project: ${request.projectId}`);
return response;
} catch (error) {
this.logger.error('Failed to analyze with context:', error);
return {
success: false,
contextualResults: [],
filteredResults: [],
prioritizedResults: [],
crossProjectInsights: [],
recommendations: [],
metadata: {
totalResults: 0,
contextualResults: 0,
filteredResults: 0,
prioritizedResults: 0,
crossProjectInsights: 0,
averageContextScore: 0,
averageRelevance: 0,
processingTime: 0,
adaptationsApplied: false
}
};
}
}
async getContextModel(projectId: string): Promise<ContextModel | null> {
return this.contextModels.get(projectId) || null;
}
async updateContextPreferences(projectId: string, preferences: Partial<ContextPreferences>): Promise<boolean> {
try {
const contextModel = this.contextModels.get(projectId);
if (!contextModel) {
throw new Error(`Context model not found: ${projectId}`);
}
contextModel.preferences = { ...contextModel.preferences, ...preferences };
contextModel.updatedAt = new Date();
await this.saveContextModel(projectId);
this.logger.info(`Successfully updated context preferences for project: ${projectId}`);
return true;
} catch (error) {
this.logger.error('Failed to update context preferences:', error);
return false;
}
}
private async createContextModel(projectId: string, context: ExtendedAnalysisContext): Promise<ContextModel> {
const model: ContextModel = {
id: projectId,
context,
preferences: this.createDefaultPreferences(),
factors: [],
patterns: [],
insights: [],
createdAt: new Date(),
updatedAt: new Date()
};
this.contextModels.set(projectId, model);
await this.saveContextModel(projectId);
this.emit('context-model-created', model);
this.logger.info(`Context model created for project: ${projectId}`);
return model;
}
private async applyContextualAnalysis(request: ContextAnalysisRequest, contextModel: ContextModel): Promise<ContextualResult[]> {
const contextualResults: ContextualResult[] = [];
for (const result of request.analysisResults) {
const contextualResult = await this.analyzeSingleResult(result, request, contextModel);
contextualResults.push(contextualResult);
}
return contextualResults;
}
private async analyzeSingleResult(result: UnifiedAnalysisResult, request: ContextAnalysisRequest, contextModel: ContextModel): Promise<ContextualResult> {
// Apply analysis algorithms
let contextScore = 0;
let relevanceScore = 0;
let confidence = 0.5;
const contextFactors: ContextFactor[] = [];
const adaptations: ContextAdaptation[] = [];
const insights: ContextInsight[] = [];
for (const [type, algorithm] of this.analysisAlgorithms) {
try {
const algorithmResult = await algorithm.analyze(result, request, contextModel);
contextScore = Math.max(contextScore, algorithmResult.contextScore);
relevanceScore = Math.max(relevanceScore, algorithmResult.relevanceScore);
confidence = Math.max(confidence, algorithmResult.confidence);
contextFactors.push(...algorithmResult.factors);
adaptations.push(...algorithmResult.adaptations);
insights.push(...algorithmResult.insights);
} catch (error) {
this.logger.warn(`Failed to apply analysis algorithm ${type}:`, error);
}
}
// Apply prediction algorithms if enabled
if (this.config.enablePredictiveAnalysis) {
for (const [type, algorithm] of this.predictionAlgorithms) {
try {
const predictionResult = await algorithm.predict(result, request, contextModel);
insights.push(...predictionResult.insights);
} catch (error) {
this.logger.warn(`Failed to apply prediction algorithm ${type}:`, error);
}
}
}
return {
id: this.generateContextualResultId(),
originalResult: result,
contextScore,
relevanceScore,
confidence,
contextFactors,
adaptations,
insights
};
}
private async applyAdaptiveFiltering(request: ContextAnalysisRequest, contextualResults: ContextualResult[], contextModel: ContextModel): Promise<FilteredResult[]> {
const filteredResults: FilteredResult[] = [];
for (const result of contextualResults) {
if (result.relevanceScore < this.config.relevanceThreshold) {
const filteredResult: FilteredResult = {
id: this.generateFilteredResultId(),
originalResult: result.originalResult,
filterReason: FilterReason.LOW_RELEVANCE,
relevance: result.relevanceScore,
context: {
reason: FilterReason.LOW_RELEVANCE,
contextScore: result.contextScore,
relevanceScore: result.relevanceScore,
threshold: this.config.relevanceThreshold,
factors: result.contextFactors.map(f => f.name)
},
recommendation: {
action: FilterAction.IGNORE,
reasoning: 'Result relevance below threshold',
confidence: 0.9,
timeline: new Date()
}
};
filteredResults.push(filteredResult);
}
}
this.emit('result-filtered', {
projectId: request.projectId,
filteredCount: filteredResults.length
});
return filteredResults;
}
private async applyContextPrioritization(request: ContextAnalysisRequest, contextualResults: ContextualResult[], contextModel: ContextModel): Promise<PrioritizedResult[]> {
const prioritizedResults: PrioritizedResult[] = [];
for (const result of contextualResults) {
const impact = await this.calculateImpact(result, request, contextModel);
const urgency = await this.calculateUrgency(result, request, contextModel);
const priority = this.determinePriority(impact, urgency);
const prioritizedResult: PrioritizedResult = {
id: this.generatePrioritizedResultId(),
originalResult: result.originalResult,
priority,
urgency,
impact,
dependencies: this.identifyDependencies(result, request),
timeline: this.generateTimeline(priority, urgency)
};
prioritizedResults.push(prioritizedResult);
}
// Sort by priority
prioritizedResults.sort((a, b) => {
const priorityOrder = {
[PriorityLevel.HIGH]: 4,
[PriorityLevel.MEDIUM]: 3,
[PriorityLevel.LOW]: 2
};
return priorityOrder[b.priority] - priorityOrder[a.priority];
});
this.emit('result-prioritized', {
projectId: request.projectId,
prioritizedCount: prioritizedResults.length
});
return prioritizedResults;
}
private async applyCrossProjectAnalysis(request: ContextAnalysisRequest, contextModel: ContextModel): Promise<CrossProjectInsight[]> {
const insights: CrossProjectInsight[] = [];
// Compare with other projects to find patterns and insights
for (const [projectId, otherModel] of this.contextModels.entries()) {
if (projectId !== request.projectId) {
const crossProjectAnalysis = await this.analyzeCrossProject(request.projectId, projectId, contextModel, otherModel);
insights.push(...crossProjectAnalysis);
}
}
this.emit('cross-project-insight', {
projectId: request.projectId,
insightCount: insights.length
});
return insights;
}
private async generateContextRecommendations(request: ContextAnalysisRequest, contextualResults: ContextualResult[], contextModel: ContextModel): Promise<ContextRecommendation[]> {
const recommendations: ContextRecommendation[] = [];
// Generate recommendations based on contextual analysis
for (const result of contextualResults) {
if (result.confidence < 0.7) {
recommendations.push({
id: this.generateRecommendationId(),
type: RecommendationType.IMPROVEMENT,
description: 'Consider improving analysis confidence through additional context',
priority: PriorityLevel.MEDIUM,
effort: 3,
expectedOutcome: 'Improved analysis accuracy and reliability',
context: {
projects: [request.projectId],
teams: [],
technologies: [],
domains: [request.context.domainContext.businessDomain],
timeframe: Timeframe.SHORT_TERM
},
confidence: 0.8
});
}
if (result.contextScore < 0.5) {
recommendations.push({
id: this.generateRecommendationId(),
type: RecommendationType.OPTIMIZATION,
description: 'Consider optimizing context factors for better analysis',
priority: PriorityLevel.LOW,
effort: 2,
expectedOutcome: 'Enhanced contextual understanding',
context: {
projects: [request.projectId],
teams: [],
technologies: [],
domains: [request.context.domainContext.businessDomain],
timeframe: Timeframe.MEDIUM_TERM
},
confidence: 0.7
});
}
}
return recommendations;
}
private async updateContextModel(contextModel: ContextModel, request: ContextAnalysisRequest, contextualResults: ContextualResult[]): Promise<void> {
// Update context model with new analysis data
for (const result of contextualResults) {
// Update factors
for (const factor of result.contextFactors) {
const existingFactor = contextModel.factors.find(f => f.type === factor.type && f.name === factor.name);
if (existingFactor) {
existingFactor.value = (existingFactor.value + factor.value) / 2;
} else {
contextModel.factors.push({ ...factor });
}
}
// Update patterns
for (const insight of result.insights) {
if (insight.type === InsightType.PATTERN) {
const existingPattern = contextModel.patterns.find(p => p.description === insight.description);
if (!existingPattern) {
contextModel.patterns.push({
id: this.generatePatternId(),
type: PatternType.CODE_PATTERN,
description: insight.description,
frequency: 1,
consistency: insight.confidence,
impact: this.calculatePatternImpact(insight)
});
} else {
existingPattern.frequency++;
}
}
}
// Update insights
contextModel.insights.push(...result.insights);
}
contextModel.updatedAt = new Date();
}
private async analyzeCrossProject(sourceProjectId: string, targetProjectId: string, sourceModel: ContextModel, targetModel: ContextModel): Promise<CrossProjectInsight[]> {
const insights: CrossProjectInsight[] = [];
// Compare context factors
const commonFactors = sourceModel.factors.filter(sourceFactor =>
targetModel.factors.some(targetFactor =>
targetFactor.type === sourceFactor.type && targetFactor.name === sourceFactor.name
)
);
if (commonFactors.length > 3) {
insights.push({
id: this.generateCrossProjectInsightId(),
type: InsightType.PATTERN,
sourceProjects: [sourceProjectId],
targetProjects: [targetProjectId],
pattern: {
type: PatternType.BEHAVIORAL_PATTERN,
description: 'Common contextual factors detected',
frequency: commonFactors.length,
consistency: 0.8,
impact: 0.7
},
impact: {
technical: 0.6,
business: 0.5,
operational: 0.7,
strategic: 0.4
},
recommendation: {
action: CrossProjectAction.SHARE,
description: 'Consider sharing contextual insights between projects',
priority: PriorityLevel.MEDIUM,
effort: 2,
expectedOutcome: 'Improved cross-project understanding',
confidence: 0.8
},
confidence: 0.8
});
}
return insights;
}
private async calculateImpact(result: ContextualResult, request: ContextAnalysisRequest, contextModel: ContextModel): Promise<ImpactAssessment> {
// Calculate impact based on context factors and result characteristics
const technicalImpact = result.contextScore * 0.8;
const businessImpact = result.relevanceScore * 0.6;
const userImpact = this.calculateUserImpact(result, request);
const teamImpact = this.calculateTeamImpact(result, request);
return {
technicalImpact,
businessImpact,
userImpact,
teamImpact,
overallImpact: (technicalImpact + businessImpact + userImpact + teamImpact) / 4,
timeline: {
immediate: technicalImpact * 0.7,
shortTerm: businessImpact * 0.8,
mediumTerm: userImpact * 0.6,
longTerm: teamImpact * 0.5
}
};
}
private async calculateUrgency(result: ContextualResult, request: ContextAnalysisRequest, contextModel: ContextModel): Promise<UrgencyLevel> {
// Calculate urgency based on temporal context and result characteristics
const temporalUrgency = request.context.temporalContext.urgency === UrgencyLevel.HIGH ? 1.0 : 0.5;
const relevanceUrgency = result.relevanceScore > 0.8 ? 1.0 : 0.5;
const impactUrgency = result.contextScore > 0.7 ? 1.0 : 0.5;
const urgencyScore = (temporalUrgency + relevanceUrgency + impactUrgency) / 3;
if (urgencyScore > 0.8) return UrgencyLevel.CRITICAL;
if (urgencyScore > 0.6) return UrgencyLevel.HIGH;
if (urgencyScore > 0.4) return UrgencyLevel.MEDIUM;
return UrgencyLevel.LOW;
}
private determinePriority(impact: ImpactAssessment, urgency: UrgencyLevel): PriorityLevel {
const impactScore = impact.overallImpact;
const urgencyScore = {
[UrgencyLevel.LOW]: 0.25,
[UrgencyLevel.MEDIUM]: 0.5,
[UrgencyLevel.HIGH]: 0.75,
[UrgencyLevel.CRITICAL]: 1.0
}[urgency];
const priorityScore = (impactScore + urgencyScore) / 2;
if (priorityScore > 0.8) return PriorityLevel.HIGH;
if (priorityScore > 0.6) return PriorityLevel.MEDIUM;
return PriorityLevel.LOW;
}
private identifyDependencies(result: ContextualResult, request: ContextAnalysisRequest): string[] {
// Identify dependencies based on spatial context and result characteristics
const dependencies: string[] = [];
for (const file of request.context.spatialContext.files) {
if (result.originalResult.affectedFiles?.includes(file)) {
dependencies.push(file);
}
}
return dependencies;
}
private generateTimeline(priority: PriorityLevel, urgency: UrgencyLevel): PriorityTimeline {
const baseTimeline = {
immediate: [],
shortTerm: [],
mediumTerm: [],
longTerm: []
};
if (priority === PriorityLevel.HIGH || urgency === UrgencyLevel.CRITICAL) {
baseTimeline.immediate.push('High priority action required');
}
if (priority === PriorityLevel.MEDIUM || urgency === UrgencyLevel.HIGH) {
baseTimeline.shortTerm.push('Medium priority action planned');
}
if (priority === PriorityLevel.LOW || urgency === UrgencyLevel.MEDIUM) {
baseTimeline.mediumTerm.push('Low priority action scheduled');
}
baseTimeline.longTerm.push('Long-term monitoring recommended');
return baseTimeline;
}
private calculateUserImpact(result: ContextualResult, request: ContextAnalysisRequest): number {
// Calculate user impact based on user context and result characteristics
const userExpertise = this.expertiseToValue(request.context.userContext.expertise);
const cognitiveLoadRatio = request.context.userContext.cognitiveLoad.current / request.context.userContext.cognitiveLoad.capacity;
return result.contextScore * (1 - cognitiveLoadRatio) * userExpertise;
}
private calculateTeamImpact(result: ContextualResult, request: ContextAnalysisRequest): number {
// Calculate team impact based on team context and result characteristics
const teamExperience = this.experienceToValue(request.context.teamContext.experience);
const collaborationScore = request.context.teamContext.collaboration.communication;
return result.relevanceScore * teamExperience * collaborationScore;
}
private calculatePatternImpact(insight: ContextInsight): number {
// Calculate pattern impact based on insight characteristics
return insight.confidence * insight.evidence.length * 0.1;
}
private expertiseToValue(expertise: ExperienceLevel): number {
const valueMap = {
[ExperienceLevel.JUNIOR]: 0.2,
[ExperienceLevel.MID]: 0.5,
[ExperienceLevel.SENIOR]: 0.8,
[ExperienceLevel.EXPERT]: 1.0
};
return valueMap[expertise];
}
private calculateAverageContextScore(results: ContextualResult[]): number {
if (results.length === 0) return 0;
const totalScore = results.reduce((sum, result) => sum + result.contextScore, 0);
return totalScore / results.length;
}
private calculateAverageRelevance(results: ContextualResult[]): number {
if (results.length === 0) return 0;
const totalRelevance = results.reduce((sum, result) => sum + result.relevanceScore, 0);
return totalRelevance / results.length;
}
private createDefaultPreferences(): ContextPreferences {
return {
maxDepth: 3,
includeCrossProject: true,
includePredictive: true,
adaptationStrategy: AdaptationStrategy.MODERATE,
prioritizationStrategy: PrioritizationStrategy.IMPACT_BASED
};
}
private async loadContextModels(): Promise<void> {
try {
const cachedModels = await this.cache.get<Map<string, any>>('context-models');
if (cachedModels) {
for (const [projectId, modelData] of Object.entries(cachedModels)) {
this.contextModels.set(projectId, modelData);
}
}
this.logger.info(`Loaded ${this.contextModels.size} context models`);
} catch (error) {
this.logger.warn('Failed to load context models:', error);
}
}
private async saveContextModel(projectId: string): Promise<void> {
try {
const model = this.contextModels.get(projectId);
if (model) {
await this.cache.set(`context-model-${projectId}`, model, 3600);
// Also save to global models index
const modelsIndex: Record<string, any> = {};
for (const [pid, m] of this.contextModels.entries()) {
modelsIndex[pid] = m;
}
await this.cache.set('context-models', modelsIndex, 3600);
}
} catch (error) {
this.logger.warn(`Failed to save context model for project ${projectId}:`, error);
}
}
// ID generation methods
private generateContextualResultId(): string {
return `contextual_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private generateFilteredResultId(): string {
return `filtered_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private generatePrioritizedResultId(): string {
return `prioritized_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private generateCrossProjectInsightId(): string {
return `cross-project_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private generateRecommendationId(): string {
return `recommendation_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
private generatePatternId(): string {
return `pattern_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
}
// Event handlers
private handleContextAnalyzed(data: any): void {
this.logger.debug(`Context analyzed event handled for project: ${data.projectId}`);
}
private handleResultFiltered(data: any): void {
this.logger.debug(`Result filtered event handled for project: ${data.projectId}`);
}
private handleResultPrioritized(data: any): void {
this.logger.debug(`Result prioritized event handled for project: ${data.projectId}`);
}
private handleCrossProjectInsight(data: any): void {
this.logger.debug(`Cross-project insight event handled`);
}
// Public API methods
async updateConfig(config: Partial<ContextAwareAnalysisConfig>): Promise<void> {
this.config = { ...this.config, ...config };
this.logger.info('Context-aware analysis configuration updated');
}
async getAnalysisStats(): Promise<any> {
const totalProjects = this.contextModels.size;
const totalPatterns = Array.from(this.contextModels.values())
.reduce((sum, model) => sum + model.patterns.length, 0);
const totalInsights = Array.from(this.contextModels.values())
.reduce((sum, model) => sum + model.insights.length, 0);
const averageContextScore = Array.from(this.contextModels.values())
.reduce((sum, model) => {
const modelScore = model.factors.reduce((factorSum, factor) => factorSum + factor.value, 0) / Math.max(1, model.factors.length);
return sum + modelScore;
}, 0) / Math.max(1, this.contextModels.size);
return {
totalProjects,
totalPatterns,
totalInsights,
averageContextScore,
adaptiveFilteringEnabled: this.config.enableAdaptiveFiltering,
contextPrioritizationEnabled: this.config.enableContextPrioritization,
crossProjectAnalysisEnabled: this.config.enableCrossProjectAnalysis,
analysisAlgorithms: this.analysisAlgorithms.size,
predictionAlgorithms: this.predictionAlgorithms.size
};
}
async shutdown(): Promise<void> {
this.logger.info('Shutting down Context-Aware Analysis Service');
// Save all context models
for (const projectId of this.contextModels.keys()) {
await this.saveContextModel(projectId);
}
// Clear event listeners
this.removeAllListeners();
this.logger.info('Context-Aware Analysis Service shutdown complete');
}
}
// Type definitions for intermediate results
interface ContextModel {
id: string;
context: ExtendedAnalysisContext;
preferences: ContextPreferences;
factors: ContextFactor[];
patterns: Pattern[];
insights: ContextInsight[];
createdAt: Date;
updatedAt: Date;
}
interface ContextPreferences {
maxDepth: number;
includeCrossProject: boolean;
includePredictive: boolean;
adaptationStrategy: AdaptationStrategy;
prioritizationStrategy: PrioritizationStrategy;
}
interface Pattern {
id: string;
type: PatternType;
description: string;
frequency: number;
consistency: number;
impact: number;
}
// Algorithm type definitions
enum AnalysisAlgorithmType {
CONTEXTUAL = 'contextual',
RELEVANCE_BASED = 'relevance-based',
IMPACT_BASED = 'impact-based',
PATTERN_BASED = 'pattern-based',
PREDICTIVE = 'predictive'
}
enum PredictionAlgorithmType {
TREND_ANALYSIS = 'trend-analysis',
ANOMALY_DETECTION = 'anomaly-detection',
CORRELATION_ANALYSIS = 'correlation-analysis',
CLASSIFICATION = 'classification',
REGRESSION = 'regression'
}
// Abstract base classes for algorithms
abstract class AnalysisAlgorithm {
abstract analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult>;
}
abstract class PredictionAlgorithm {
abstract predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult>;
}
// Result type definitions
interface AnalysisAlgorithmResult {
contextScore: number;
relevanceScore: number;
confidence: number;
factors: ContextFactor[];
adaptations: ContextAdaptation[];
insights: ContextInsight[];
}
interface PredictionAlgorithmResult {
insights: ContextInsight[];
}
// Concrete algorithm implementations (simplified)
class ContextualAnalysisAlgorithm extends AnalysisAlgorithm {
async analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult> {
// Implement contextual analysis logic
return {
contextScore: 0.7,
relevanceScore: 0.8,
confidence: 0.75,
factors: [{
id: 'factor-1',
type: FactorType.CONTEXT,
name: 'Context Relevance',
value: 0.8,
weight: 0.5,
description: 'Result is relevant to current context',
source: FactorSource.ANALYSIS
}],
adaptations: [],
insights: []
};
}
}
class RelevanceBasedAnalysisAlgorithm extends AnalysisAlgorithm {
async analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult> {
// Implement relevance-based analysis logic
return {
contextScore: 0.6,
relevanceScore: 0.9,
confidence: 0.8,
factors: [{
id: 'factor-2',
type: FactorType.BUSINESS,
name: 'Business Relevance',
value: 0.9,
weight: 0.6,
description: 'Result has high business relevance',
source: FactorSource.ANALYSIS
}],
adaptations: [],
insights: []
};
}
}
class ImpactBasedAnalysisAlgorithm extends AnalysisAlgorithm {
async analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult> {
// Implement impact-based analysis logic
return {
contextScore: 0.8,
relevanceScore: 0.7,
confidence: 0.85,
factors: [{
id: 'factor-3',
type: FactorType.TECHNICAL,
name: 'Technical Impact',
value: 0.8,
weight: 0.7,
description: 'Result has significant technical impact',
source: FactorSource.ANALYSIS
}],
adaptations: [],
insights: []
};
}
}
class PatternBasedAnalysisAlgorithm extends AnalysisAlgorithm {
async analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult> {
// Implement pattern-based analysis logic
return {
contextScore: 0.75,
relevanceScore: 0.75,
confidence: 0.7,
factors: [{
id: 'factor-4',
type: FactorType.TEMPORAL,
name: 'Pattern Recognition',
value: 0.75,
weight: 0.4,
description: 'Result matches known patterns',
source: FactorSource.ANALYSIS
}],
adaptations: [],
insights: [{
id: 'insight-1',
type: InsightType.PATTERN,
description: 'Pattern detected in analysis result',
confidence: 0.7,
evidence: ['Pattern matching algorithm'],
implications: ['May indicate systemic issue']
}]
};
}
}
class PredictiveAnalysisAlgorithm extends AnalysisAlgorithm {
async analyze(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<AnalysisAlgorithmResult> {
// Implement predictive analysis logic
return {
contextScore: 0.65,
relevanceScore: 0.8,
confidence: 0.6,
factors: [{
id: 'factor-5',
type: FactorType.PREDICTIVE,
name: 'Predictive Relevance',
value: 0.65,
weight: 0.3,
description: 'Result has predictive value',
source: FactorSource.PREDICTIVE
}],
adaptations: [],
insights: [{
id: 'insight-2',
type: InsightType.PREDICTION,
description: 'Future impact predicted',
confidence: 0.6,
evidence: ['Predictive model'],
implications: ['May require future attention']
}]
};
}
}
class TrendAnalysisAlgorithm extends PredictionAlgorithm {
async predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult> {
// Implement trend analysis logic
return {
insights: [{
id: 'insight-3',
type: InsightType.PATTERN,
description: 'Trend detected in historical data',
confidence: 0.75,
evidence: ['Historical analysis'],
implications: ['Trend may continue']
}]
};
}
}
class AnomalyDetectionAlgorithm extends PredictionAlgorithm {
async predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult> {
// Implement anomaly detection logic
return {
insights: [{
id: 'insight-4',
type: InsightType.ANOMALY,
description: 'Anomaly detected in analysis result',
confidence: 0.8,
evidence: ['Anomaly detection algorithm'],
implications: ['May indicate unusual behavior']
}]
};
}
}
class CorrelationAnalysisAlgorithm extends PredictionAlgorithm {
async predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult> {
// Implement correlation analysis logic
return {
insights: [{
id: 'insight-5',
type: InsightType.CORRELATION,
description: 'Correlation found with other factors',
confidence: 0.7,
evidence: ['Correlation analysis'],
implications: ['May indicate causal relationship']
}]
};
}
}
class ClassificationAlgorithm extends PredictionAlgorithm {
async predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult> {
// Implement classification logic
return {
insights: [{
id: 'insight-6',
type: InsightType.PATTERN,
description: 'Result classified into specific category',
confidence: 0.85,
evidence: ['Classification algorithm'],
implications: ['Category-specific actions may be needed']
}]
};
}
}
class RegressionAlgorithm extends PredictionAlgorithm {
async predict(
result: UnifiedAnalysisResult,
request: ContextAnalysisRequest,
contextModel: ContextModel
): Promise<PredictionAlgorithmResult> {
// Implement regression logic
return {
insights: [{
id: 'insight-7',
type: InsightType.PREDICTION,
description: 'Future values predicted based on regression',
confidence: 0.65,
evidence: ['Regression model'],
implications: ['Predictions may inform planning']
}]
};
}
}