Skip to main content
Glama

Kiro MCP Memory

by cbunting99
INSTALLATION.md3.67 kB
# Enhanced MCP Memory - Installation Guide ## Quick Start with uvx (Recommended) The easiest way to install and run Enhanced MCP Memory is using `uvx`: ```bash # Install and run directly uvx enhanced-mcp-memory ``` This will automatically: - Download and install the package - Install all dependencies - Start the MCP server ## MCP Client Configuration Add this to your MCP client configuration file: ### For uvx installation: ```json { "mcpServers": { "memory-manager": { "command": "uvx", "args": ["enhanced-mcp-memory"], "env": { "LOG_LEVEL": "INFO", "MAX_MEMORY_ITEMS": "1000", "ENABLE_AUTO_CLEANUP": "true" } } } } ``` ### For local development: ```json { "mcpServers": { "memory-manager": { "command": "python", "args": ["mcp_server_enhanced.py"], "cwd": "/path/to/enhanced-mcp-memory", "env": { "LOG_LEVEL": "INFO", "MAX_MEMORY_ITEMS": "1000", "ENABLE_AUTO_CLEANUP": "true" } } } } ``` ## Alternative Installation Methods ### Method 1: pip install from PyPI (when published) ```bash pip install enhanced-mcp-memory enhanced-mcp-memory ``` ### Method 2: pip install from source ```bash pip install git+https://github.com/cbunting99/enhanced-mcp-memory.git enhanced-mcp-memory ``` ### Method 3: Development installation ```bash git clone https://github.com/cbunting99/enhanced-mcp-memory.git cd enhanced-mcp-memory pip install -e . enhanced-mcp-memory ``` ### Method 4: Run directly from source ```bash git clone https://github.com/cbunting99/enhanced-mcp-memory.git cd enhanced-mcp-memory pip install -r requirements.txt python mcp_server_enhanced.py ``` ## Environment Variables Configure the server behavior using these environment variables: | Variable | Default | Description | |----------|---------|-------------| | `LOG_LEVEL` | `INFO` | Logging level (DEBUG, INFO, WARNING, ERROR) | | `MAX_MEMORY_ITEMS` | `1000` | Maximum memories per project | | `CLEANUP_INTERVAL_HOURS` | `24` | Auto-cleanup interval | | `ENABLE_AUTO_CLEANUP` | `true` | Enable automatic cleanup | | `MAX_CONCURRENT_REQUESTS` | `5` | Max concurrent requests | | `REQUEST_TIMEOUT` | `30` | Request timeout in seconds | ## First Run On first startup, the server will: 1. Create a `data/` directory for the SQLite database 2. Create a `logs/` directory for log files 3. Download the sentence-transformers model (~90MB) for semantic search 4. Initialize the database schema ## Verification Test that the installation works: ```bash # Test import python -c "import mcp_server_enhanced; print('✅ Installation successful')" # Run tests (if installed from source) python run_tests.py ``` ## Troubleshooting ### Common Issues 1. **Import errors**: Make sure all dependencies are installed ```bash pip install -r requirements.txt ``` 2. **Permission errors**: The server needs write access to create `data/` and `logs/` directories 3. **Model download fails**: Ensure internet connection for downloading the AI model on first run 4. **Unicode errors on Windows**: The server handles this automatically, but ensure your terminal supports UTF-8 ### Getting Help - Check the logs in `logs/mcp_memory_YYYYMMDD.log` - Use the `health_check()` tool to verify server status - Run `get_performance_stats()` to check performance metrics ## Next Steps Once installed, you can: 1. Use `get_memory_context()` to retrieve relevant memories 2. Use `create_task()` to add new tasks 3. Use `health_check()` to monitor server health 4. Explore all available tools in your MCP client For more information, see the main [README.md](README.md) file.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/cbunting99/kiro-mcp-memory'

If you have feedback or need assistance with the MCP directory API, please join our Discord server