We provide all the information about MCP servers via our MCP API.
curl -X GET 'https://glama.ai/api/mcp/v1/servers/cbcoutinho/nextcloud-mcp-server'
If you have feedback or need assistance with the MCP directory API, please join our Discord server
docker-compose.ci.yml•1.21 kB
# CI-specific overrides for RAG evaluation pipeline
# This file is used by the rag-evaluation.yml workflow to configure the MCP
# container with OpenAI/GitHub Models API for vector embeddings.
#
# Usage:
# docker compose -f docker-compose.yml -f docker-compose.ci.yml up
#
# Environment variables (set in CI workflow):
# OPENAI_API_KEY - API key for embeddings (GitHub Models uses GITHUB_TOKEN)
# OPENAI_BASE_URL - API endpoint (e.g., https://models.github.ai/inference)
# OPENAI_EMBEDDING_MODEL - Model name (e.g., openai/text-embedding-3-small)
# OPENAI_GENERATION_MODEL - Model name for generation (e.g., openai/gpt-4o-mini)
services:
mcp:
environment:
# OpenAI provider configuration (required for CI vector sync)
- OPENAI_API_KEY=${OPENAI_API_KEY}
- OPENAI_BASE_URL=${OPENAI_BASE_URL:-https://models.github.ai/inference}
- OPENAI_EMBEDDING_MODEL=${OPENAI_EMBEDDING_MODEL:-openai/text-embedding-3-small}
- OPENAI_GENERATION_MODEL=${OPENAI_GENERATION_MODEL:-openai/gpt-4o-mini}
# Faster sync for CI
- VECTOR_SYNC_SCAN_INTERVAL=${VECTOR_SYNC_SCAN_INTERVAL:-5}
# Enable document processing for PDF parsing
- ENABLE_DOCUMENT_PROCESSING=true